0x10 基本数据结构—队列(最大子序和)

最大子序和

输入一个长度为 n n n 的整数序列,从中找出一段长度不超过 m m m 的连续子序列,使得子序列中所有数的和最大。

注意: 子序列的长度至少是 1 1 1

输入格式
第一行输入两个整数 n , m n,m n,m

第二行输入 n n n 个数,代表长度为 n n n 的整数序列。

同一行数之间用空格隔开。

输出格式
输出一个整数,代表该序列的最大子序和。

数据范围
1 ≤ n , m ≤ 300000 1≤n,m≤300000 1n,m300000
输入样例:

6
4 1 -3 5 1 -2 3

输出样例:

7


算法:单调队列 O ( n ) O(n) O(n)

  • 计算区间和,容易想到前缀和,可以在 O ( 1 ) O(1) O(1)的时间内得到子序列的和
  • 枚举以i结尾的子序列,往前延伸最多m个单位找到s[j]的最小值,有前缀和得到子序列和公式:
  • sum=s[i]-s[j-1]=a[j]+a[j+1]+...+a[i]
  • 在枚举以i为结尾的子序列时,i是确定的,即s[i]为定值,我们只需要在不超过m个单位的连续长度里找到最小的s[j],相减即为最大值
  • 假设单调队列元素为 0 4 2 ,那么2一定是比4更好的s[j],而且4一定在2前面出列,因此我们可以直接淘汰,更新队列时从队尾遍历到队头找到插入的位置即可,大于或等于s[i]的队尾元素可以一直淘汰

C++ 代码

#include <iostream>

using namespace std;

const int N=300010;

long long s[N];
int n,m;
int q[N],hh,tt;

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&s[i]);
        s[i]+=s[i-1];
    }
    //q[0]=0,默认以0作为前导方便计算
    long long res=-0x3f3f3f3f;
    for(int i=1;i<=n;i++)//枚举以i结尾的连续子序列
    {
        if(i-q[hh]>m) hh++;//维护窗口大小
        res=max(res,s[i]-s[q[hh]]);//O(1)的时间得到以i结尾的不超过m的连续子序列最大值
        while(hh<=tt&&s[q[tt]]>=s[i]) tt--;
        q[++tt]=i;//找到符合递增的位置入队
    }
    
    cout<<res<<endl;
    
    return 0;
}

题目来源:AcWing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值