在sklearn中实现KNN算法

这段内容展示了如何使用Python的scikit-learn库实现K近邻(KNN)分类器。首先,创建了一个KNN分类器实例,设置邻居数量为6。接着,用训练数据拟合分类器。然后,将新的样本数据转换为二维数组,并用KNN分类器进行预测,最终得到预测结果为1。
摘要由CSDN通过智能技术生成

from sklearn.neighbors import KNeighborsClassifier

# 创建knn算法的分类器实例
# n_neighbors=6,指定选取邻居的个数
knn_classifier = KNeighborsClassifier(n_neighbors=6)

# 拟合训练数据
knn_classifier.fit(X_train,y_train)

# 将样本维度变为二维,X_train,y_train为二维数组
x1 = x.reshape(1, -1)
x1
# array([[8.09360732, 3.36573151]])

# 利用knn算法进行预测
y_predict = knn_classifier.predict(x1)

# 得出预测结果
y_predict[0]
# 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值