一、赛题理解
赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle
、purpose
、postCode
和title
等信息进行脱敏。
字段表
Field | Description |
---|---|
id | 为贷款清单分配的唯一信用证标识 |
loanAmnt | 贷款金额 |
term | 贷款期限(year) |
interestRate | 贷款利率 |
installment | 分期付款金额 |
grade | 贷款等级 |
subGrade | 贷款等级之子级 |
employmentTitle | 就业职称 |
employmentLength | 就业年限(年) |
homeOwnership | 借款人在登记时提供的房屋所有权状况 |
annualIncome | 年收入 |
verificationStatus | 验证状态 |
issueDate | 贷款发放的月份 |
purpose | 借款人在贷款申请时的贷款用途类别 |
postCode | 借款人在贷款申请中提供的邮政编码的前3位数字 |
regionCode | 地区编码 |
dti | 债务收入比 |
delinquency_2years | 借款人过去2年信用档案中逾期30天以上的违约事件数 |
ficoRangeLow | 借款人在贷款发放时的fico所属的下限范围 |
ficoRangeHigh | 借款人在贷款发放时的fico所属的上限范围 |
openAcc | 借款人信用档案中未结信用额度的数量 |
pubRec | 贬损公共记录的数量 |
pubRecBankruptcies | 公开记录清除的数量 |
revolBal | 信贷周转余额合计 |
revolUtil | 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额 |
totalAcc | 借款人信用档案中当前的信用额度总数 |
initialListStatus | 贷款的初始列表状态 |
applicationType | 表明贷款是个人申请还是与两个共同借款人的联合申请 |
earliesCreditLine | 借款人最早报告的信用额度开立的月份 |
title | 借款人提供的贷款名称 |
policyCode | 公开可用的策略_代码=1新产品不公开可用的策略_代码=2 |
n系列匿名特征 | 匿名特征n0-n14,为一些贷款人行为计数特征的处理 |
结果评价
提交结果为每个测试样本是1的概率,也就是y为1的概率。评价方法为AUC评估模型效果(越大越好)。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。
二、常用评估指标
2.1 分类算法常用评价标准
混沌矩阵(Confuse Matrix)
类别 | 描述 |
---|---|
真正类(True Positive, TP) | 实际分类为正类,且预测分类为正类 |
假正类(False Positive, FP) | 实际分类为负类,但预测分类为正类 |
真负类(True Negative, TN) | 实际分类为负类,且预测分类为负类 |
假负类(False Negative, FN) | 实际分类为正类,但预测分类为负类 |
简易理解准确率、精确率和召回率。
类别 | 描述 |
---|---|
准确率 | 对角线/整体 |
精确率 | TP/整行 |
召回率 | TP/整列 |
准确率(Accuracy)
准确率是评价的一个常用指标,但不适用于样本不均衡的情况。
A
c
c
u
r
a
c
y
=
T
P
+
T
N
T
P
+
T
N
+
F
P
+
F
N
Accuracy = \frac{{TP + TN}}{{TP + TN + FP + FN}}
Accuracy=TP+TN+FP+FNTP+TN
精确率(Precision)
又称为查准率,计算正确预测为正样本(TP)占预测为正样本(TP+NP)的百分比。
P
r
e
c
i
s
i
o
n
=
T
P
T
P
+
F
P
Precision = \frac{{TP}}{{TP + FP }}
Precision=TP+FPTP
召回率(Recall)
又称为查全率,计算正确预测我正样本(TP)占真实为正样本(TP+FN)的百分比。
R
e
c
a
l
l
=
T
P
T
P
+
F
N
Recall = \frac{{TP}}{{TP + FN }}
Recall=TP+FNTP
F1-Score
精确率和召回率是相互影响的,两者成反比例,如果需要兼顾两者,则采用F1-Score评价标准。
F
1
−
S
c
o
r
e
=
2
1
P
r
e
c
i
s
i
o
n
+
1
R
e
c
a
l
l
F1 - Score = \frac{2}{{\frac{1}{{Precision}} + \frac{1}{{Recall}}}}
F1−Score=Precision1+Recall12
P-R曲线(Presicion-Recall Curve)
P-R曲线是描述精确度和召回率相互影响变化的曲线。
ROC(Receiver Operating Characteristic)
ROC空间将假正例率(False Positive Rate, FPR)定义为X轴,真正例率(True Positive Rate, TPR)定义为Y轴。
TPR:在所有实际为正类的样本中,被正确判断为正类的比率(也就是Recall)。
T
P
R
=
T
P
T
P
+
F
N
TPR = \frac{{TP}}{{TP + FN }}
TPR=TP+FNTP
FPR:在所有实际为负类的样本中,被错误判断为负类的比率。
F
P
R
=
F
P
F
P
+
T
N
FPR = \frac{{FP}}{{FP + TN }}
FPR=FP+TNFP
- Question:为什么计算两个比率后会得到一条曲线?
- Answer:对于样本的预测结果是概率,而被判断为正类还是负类是根据预先设定的阈值进行判断,当去不同的阈值时,所得到的的TPR和FPR坐标也就不同,将得到的所有坐标相连,就得到了最后的ROC曲线图。
AUC(Area Under Curve)
AUC(Area Under Curve)被定义为 ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。
2.2 金融风控常用评价指标
金融风控常见的评价指标包括上边提到的ROC和AUC,还有K-S曲线。
K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。
K
S
=
m
a
x
(
T
P
R
−
F
P
R
)
KS = max(TPR - FPR)
KS=max(TPR−FPR)
KS值代表着两条曲线的最大差值。
一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。
- KS值<0.2,一般认为模型没有区分能力。
- KS值[0.2,0.3],模型具有一定区分能力,勉强可以接受
- KS值[0.3,0.5],模型具有较强的区分能力。
- KS值大于0.75,往往表示模型有异常
三、代码示例
数据集加载
import pandas as pd
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
print('Train data shape:',train.shape)
print('TestA data shape:',testA.shape)
Train data shape: (800000, 47)
TestA data shape: (200000, 48)
train.head()
id | loanAmnt | term | interestRate | installment | grade | subGrade | employmentTitle | employmentLength | homeOwnership | ... | n5 | n6 | n7 | n8 | n9 | n10 | n11 | n12 | n13 | n14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 35000.0 | 5 | 19.52 | 917.97 | E | E2 | 320.0 | 2 years | 2 | ... | 9.0 | 8.0 | 4.0 | 12.0 | 2.0 | 7.0 | 0.0 | 0.0 | 0.0 | 2.0 |
1 | 1 | 18000.0 | 5 | 18.49 | 461.90 | D | D2 | 219843.0 | 5 years | 0 | ... | NaN | NaN | NaN | NaN | NaN | 13.0 | NaN | NaN | NaN | NaN |
2 | 2 | 12000.0 | 5 | 16.99 | 298.17 | D | D3 | 31698.0 | 8 years | 0 | ... | 0.0 | 21.0 | 4.0 | 5.0 | 3.0 | 11.0 | 0.0 | 0.0 | 0.0 | 4.0 |
3 | 3 | 11000.0 | 3 | 7.26 | 340.96 | A | A4 | 46854.0 | 10+ years | 1 | ... | 16.0 | 4.0 | 7.0 | 21.0 | 6.0 | 9.0 | 0.0 | 0.0 | 0.0 | 1.0 |
4 | 4 | 3000.0 | 3 | 12.99 | 101.07 | C | C2 | 54.0 | NaN | 1 | ... | 4.0 | 9.0 | 10.0 | 15.0 | 7.0 | 12.0 | 0.0 | 0.0 | 0.0 | 4.0 |
5 rows × 47 columns
混沌矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0,1,0]
y_true = [0,0,1]
matrix = confusion_matrix(y_true,y_pred)
print('混沌矩阵:\n',matrix)
混沌矩阵:
[[1 1]
[1 0]]
准确率
from sklearn.metrics import accuracy_score
y_pred = [0,1,0,1]
y_true = [0,1,1,0]
print('ACC:',accuracy_score(y_true,y_pred))
ACC: 0.5
精确率、召回率和F1-Score
from sklearn import metrics
y_pred = [0,1,0,1]
y_true = [0,1,1,0]
print('Precision:',metrics.precision_score(y_true,y_pred))
print('Recall:',metrics.recall_score(y_true,y_pred))
print('F1-Score:',metrics.f1_score(y_true,y_pred))
Precision: 0.5
Recall: 0.5
F1-Score: 0.5
P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0,1,1,0,1,1,0,1,1,1]
y_true = [0,1,1,0,1,0,1,1,0,1]
precision,recall,thresholds = precision_recall_curve(y_true,y_pred)
plt.plot(precision,recall)
plt.show()
ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0,1,1,0,1,1,0,1,1,1]
y_true = [0,1,1,0,1,0,1,1,0,1]
# 固定标签了所以只有一个点
FPR, TPR, thresholds = roc_curve(y_true,y_pred)
plt.title('ROC')
plt.plot(FPR,TPR, 'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5,0,'FPR')
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0,0,1,1])
y_scores = np.array([0.1,0.4,0.35,0.8])
# scores为样本为真的概率
# 在画ROC曲线时阈值不断增大预测标签就会发生改变从而得到不同的FPR和TPR
FPR, TPR, thresholds = roc_curve(y_true,y_scores)
plt.title('ROC')
plt.plot(FPR,TPR, 'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5,0,'FPR')
AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0,0,1,1])
y_scores = np.array([0.1,0.4,0.35,0.8])
# scores为样本为真概率
print('AUC score:',roc_auc_score(y_true, y_scores))
AUC score: 0.75