天池竞赛-金融风控-task1

一、赛题理解

赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitlepurposepostCodetitle等信息进行脱敏。

字段表

FieldDescription
id为贷款清单分配的唯一信用证标识
loanAmnt贷款金额
term贷款期限(year)
interestRate贷款利率
installment分期付款金额
grade贷款等级
subGrade贷款等级之子级
employmentTitle就业职称
employmentLength就业年限(年)
homeOwnership借款人在登记时提供的房屋所有权状况
annualIncome年收入
verificationStatus验证状态
issueDate贷款发放的月份
purpose借款人在贷款申请时的贷款用途类别
postCode借款人在贷款申请中提供的邮政编码的前3位数字
regionCode地区编码
dti债务收入比
delinquency_2years借款人过去2年信用档案中逾期30天以上的违约事件数
ficoRangeLow借款人在贷款发放时的fico所属的下限范围
ficoRangeHigh借款人在贷款发放时的fico所属的上限范围
openAcc借款人信用档案中未结信用额度的数量
pubRec贬损公共记录的数量
pubRecBankruptcies公开记录清除的数量
revolBal信贷周转余额合计
revolUtil循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
totalAcc借款人信用档案中当前的信用额度总数
initialListStatus贷款的初始列表状态
applicationType表明贷款是个人申请还是与两个共同借款人的联合申请
earliesCreditLine借款人最早报告的信用额度开立的月份
title借款人提供的贷款名称
policyCode公开可用的策略_代码=1新产品不公开可用的策略_代码=2
n系列匿名特征匿名特征n0-n14,为一些贷款人行为计数特征的处理

结果评价
提交结果为每个测试样本是1的概率,也就是y为1的概率。评价方法为AUC评估模型效果(越大越好)。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。

二、常用评估指标

2.1 分类算法常用评价标准

混沌矩阵(Confuse Matrix)
在这里插入图片描述

类别描述
真正类(True Positive, TP)实际分类为正类,且预测分类为正类
假正类(False Positive, FP)实际分类为负类,但预测分类为正类
真负类(True Negative, TN)实际分类为负类,且预测分类为负类
假负类(False Negative, FN)实际分类为正类,但预测分类为负类

简易理解准确率、精确率和召回率。

类别描述
准确率对角线/整体
精确率TP/整行
召回率TP/整列

准确率(Accuracy)
准确率是评价的一个常用指标,但不适用于样本不均衡的情况。
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{{TP + TN}}{{TP + TN + FP + FN}} Accuracy=TP+TN+FP+FNTP+TN

精确率(Precision)
又称为查准率,计算正确预测为正样本(TP)占预测为正样本(TP+NP)的百分比。
P r e c i s i o n = T P T P + F P Precision = \frac{{TP}}{{TP + FP }} Precision=TP+FPTP

召回率(Recall)
又称为查全率,计算正确预测我正样本(TP)占真实为正样本(TP+FN)的百分比。
R e c a l l = T P T P + F N Recall = \frac{{TP}}{{TP + FN }} Recall=TP+FNTP

F1-Score
精确率和召回率是相互影响的,两者成反比例,如果需要兼顾两者,则采用F1-Score评价标准。
F 1 − S c o r e = 2 1 P r e c i s i o n + 1 R e c a l l F1 - Score = \frac{2}{{\frac{1}{{Precision}} + \frac{1}{{Recall}}}} F1Score=Precision1+Recall12

P-R曲线(Presicion-Recall Curve)
P-R曲线是描述精确度和召回率相互影响变化的曲线。
在这里插入图片描述
ROC(Receiver Operating Characteristic)
ROC空间将假正例率(False Positive Rate, FPR)定义为X轴,真正例率(True Positive Rate, TPR)定义为Y轴。
TPR:在所有实际为正类的样本中,被正确判断为正类的比率(也就是Recall)。
T P R = T P T P + F N TPR = \frac{{TP}}{{TP + FN }} TPR=TP+FNTP
FPR:在所有实际为负类的样本中,被错误判断为负类的比率。
F P R = F P F P + T N FPR = \frac{{FP}}{{FP + TN }} FPR=FP+TNFP
在这里插入图片描述

  • Question:为什么计算两个比率后会得到一条曲线?
  • Answer:对于样本的预测结果是概率,而被判断为正类还是负类是根据预先设定的阈值进行判断,当去不同的阈值时,所得到的的TPR和FPR坐标也就不同,将得到的所有坐标相连,就得到了最后的ROC曲线图。

AUC(Area Under Curve)
AUC(Area Under Curve)被定义为 ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

2.2 金融风控常用评价指标

金融风控常见的评价指标包括上边提到的ROC和AUC,还有K-S曲线。
K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。

在这里插入图片描述
K S = m a x ( T P R − F P R ) KS = max(TPR - FPR) KS=max(TPRFPR)
KS值代表着两条曲线的最大差值。
一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。

  • KS值<0.2,一般认为模型没有区分能力。
  • KS值[0.2,0.3],模型具有一定区分能力,勉强可以接受
  • KS值[0.3,0.5],模型具有较强的区分能力。
  • KS值大于0.75,往往表示模型有异常

三、代码示例

数据集加载

import pandas as pd
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
print('Train data shape:',train.shape)
print('TestA data shape:',testA.shape)
Train data shape: (800000, 47)
TestA data shape: (200000, 48)
train.head()
idloanAmntterminterestRateinstallmentgradesubGradeemploymentTitleemploymentLengthhomeOwnership...n5n6n7n8n9n10n11n12n13n14
0035000.0519.52917.97EE2320.02 years2...9.08.04.012.02.07.00.00.00.02.0
1118000.0518.49461.90DD2219843.05 years0...NaNNaNNaNNaNNaN13.0NaNNaNNaNNaN
2212000.0516.99298.17DD331698.08 years0...0.021.04.05.03.011.00.00.00.04.0
3311000.037.26340.96AA446854.010+ years1...16.04.07.021.06.09.00.00.00.01.0
443000.0312.99101.07CC254.0NaN1...4.09.010.015.07.012.00.00.00.04.0

5 rows × 47 columns

混沌矩阵

import numpy as np
from sklearn.metrics import confusion_matrix

y_pred = [0,1,0]
y_true = [0,0,1]
matrix = confusion_matrix(y_true,y_pred)
print('混沌矩阵:\n',matrix)

混沌矩阵:
 [[1 1]
 [1 0]]

准确率

from sklearn.metrics import accuracy_score
y_pred = [0,1,0,1]
y_true = [0,1,1,0]
print('ACC:',accuracy_score(y_true,y_pred))
ACC: 0.5

精确率、召回率和F1-Score

from sklearn import metrics
y_pred = [0,1,0,1]
y_true = [0,1,1,0]
print('Precision:',metrics.precision_score(y_true,y_pred))
print('Recall:',metrics.recall_score(y_true,y_pred))
print('F1-Score:',metrics.f1_score(y_true,y_pred))
Precision: 0.5
Recall: 0.5
F1-Score: 0.5

P-R曲线

import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0,1,1,0,1,1,0,1,1,1]
y_true = [0,1,1,0,1,0,1,1,0,1]
precision,recall,thresholds = precision_recall_curve(y_true,y_pred)
plt.plot(precision,recall)
plt.show()

在这里插入图片描述

ROC曲线

from sklearn.metrics import roc_curve
y_pred = [0,1,1,0,1,1,0,1,1,1]
y_true = [0,1,1,0,1,0,1,1,0,1]
# 固定标签了所以只有一个点
FPR, TPR, thresholds = roc_curve(y_true,y_pred)
plt.title('ROC')
plt.plot(FPR,TPR, 'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5,0,'FPR')

在这里插入图片描述

import numpy as np 
from sklearn.metrics import roc_auc_score
y_true = np.array([0,0,1,1])
y_scores = np.array([0.1,0.4,0.35,0.8])
# scores为样本为真的概率    
# 在画ROC曲线时阈值不断增大预测标签就会发生改变从而得到不同的FPR和TPR

FPR, TPR, thresholds = roc_curve(y_true,y_scores)
plt.title('ROC')
plt.plot(FPR,TPR, 'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5,0,'FPR')

在这里插入图片描述

AUC

import numpy as np 
from sklearn.metrics import roc_auc_score
y_true = np.array([0,0,1,1])
y_scores = np.array([0.1,0.4,0.35,0.8])
# scores为样本为真概率
print('AUC score:',roc_auc_score(y_true, y_scores))


AUC score: 0.75
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值