LeetCode 72 编辑距离
昨天的开始遇到了这道题的变种,本质是一样的,问题是没有刷到,遗憾。看了题解,据说这道题的面试频率很高,另外这道题确实很有趣,有必要学习下。
这道题采用dp的思想,dp记录的是:从word1的[0,i]段转换到word2的][0,j]段,所使用的最少操作数。换句话说,经过dp[i][j]次操作word1和word2相同了。
首先,需要进行初始化的操作。
1.将长度为i的word1转换成空字符串需要i次删除操作,有:dp[i][0] = i;
2.将空字符串转换为长度为j的word2需要j次插入操作,有:dp[0][j] = j。
对于每一个dp[i][j],有以下几种情况:
1.当前位置两字符串的字符相等:dp[i][j] = dp[i - 1][j - 1]
2.当前位置两字符串的字符不等:
word1插入一个字符:dp[i][j] = dp[i][j - 1] + 1;
word1删除一个字符:dp[i][j] = dp[i - 1][j] + 1;
word1替换一个字符:dp[i][j] = dp[i - 1][j - 1] + 1;
最后,返回dp[length1][length2]。
class Solution {
public int minDistance(String word1, String word2) {
int length1 = word1.length();
int length2 = word2.length();
//dp[i][j]表示:从word1的[0,i]段转换到word2的][0,j]段,所使用的最少操作数
int[][] dp = new int[length1 + 1][length2 + 1];
//初始化过程
//dp[i][0]表示:word1的[0,i]段转换到长度为0的word2,所使用的最少操作数(即需要把word1的i个字符都删除了)
for (int i = 0; i <= length1; i++) {
dp[i][0] = i;
}
//dp[0][i]表示:长度为0的word1转换到word2的[0,j]段,所使用的最少操作数(即需要在word1中插入j个字符)
for (int j = 1; j <= length2; j++) {
dp[0][j] = j;
}
//具体操作
/*
1.当前位置两字符串的字符相等:dp[i][j] = dp[i - 1][j - 1]
2.当前位置两字符串的字符不等:
word1插入一个字符:dp[i][j] = dp[i][j - 1] + 1;
word1删除一个字符:dp[i][j] = dp[i - 1][j] + 1;
word1替换一个字符:dp[i][j] = dp[i - 1][j - 1] + 1;
*/
for (int i = 1; i <= length1; i++) {
for (int j = 1; j <= length2; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[length1][length2];
}
}