信息抽取
文章平均质量分 92
静~墨
不为无益之事,何以遣有生之涯。#AI算法小喵 阿墨
展开
-
事件共指消解调研
本篇博文是对事件共指关系消解的调研记录,后续将会补充事件共指消解系列论文研读笔记。原创 2022-02-09 22:03:35 · 1971 阅读 · 0 评论 -
事件抽取相关调研-厂商篇
事件抽取相关调研1. 事件抽取-厂商1.1 华为云1.2 百度1.3 科大讯飞1.4 深擎科技1.5 幂律智能1.6 云孚语义2.后续本篇不具体谈技术,主要是总结在事件抽取方向的相关调研结果。1. 事件抽取-厂商(1) 领域范畴:厂商无论是在特定领域(如:法律、金融),还是通用领域,厂商做的都是限定类型的事件抽取。(2)范式:除标准抽取外(即事件检测和事件论元识别),还有:仅抽取触发词和论元仅抽取事件类型和论元在论元抽取上也各不相同,有的仅抽取主体,有的抽取通用属性(如:时间/地点原创 2021-09-08 22:29:23 · 911 阅读 · 4 评论 -
事件抽取算法之CasEE
事件抽取算法之CasEE1.背景1.1 事件抽取任务描述1.2 CasRel范式迁移到事件抽取1.3 笔记动机2.问题和核心思想3.模型和代码细节总结和思考参考近来一直在做事件抽取方向的研究,读了许多相关论文,这里做一个系列的论文阅读笔记。(????笔者太懒了,以后争取及时更新)CasEE[1]^{[1]}[1]从名字来看,容易让人想到用于实体关系抽取的CasRel[2]^{[2]}[2]。没错,CasEE本质上就是利用层叠指针网络来联合进行事件检测和事件论元识别两个子任务的,本文将对该方法做一个简原创 2021-09-08 21:36:06 · 3019 阅读 · 13 评论 -
实体识别模型TENER泛读笔记
实体识别模型TENER泛读笔记一、问题和核心思想1. 方向和位置2. 更sharp的注意力二、模型细节1. Transformer概述1.1 Self-Attention1.2 Position Embedding2. 方向和距离感知的Attention2.1 距离有感但方向无感的位置嵌入2.2 距离有感到无感2.3 TENER中的Attention三、总结和疑问TENER是邱锡鹏老师团队的工作,其核心在于Attention设计时考虑了对于实体识别问题而言可能重要的三个因素:方向、距离(相对位置)以及词原创 2020-12-31 10:55:28 · 2232 阅读 · 0 评论 -
NLP数据标注工具调研
数据标注工具调研一、开源数据标注工具1. BRAT2. prodigy3. Chinese-Annotator4. YEDDA5. IEPY6. Deepdive7. snorkel8. Doccano二、总结三、参考:中文nlp领域比较困扰的点在于缺乏数据,尤其像事件抽取这样的任务,人工标注非常耗时费力,而且很容易出错,所以想要搭建一个针对事件抽取的标注系统。在调研如何造轮子时,发现有些开源工具或许可以用,或许可以避免这部分的时间消耗。一、开源数据标注工具1. BRAT安装环境:osx或者l原创 2020-11-16 20:32:43 · 1270 阅读 · 0 评论 -
事件抽取算法DMCNN
最近一直在阅读事件抽取方向的相关论文,这里做一个系列的论文阅读笔记。DMCNN是一种基于动态池化(dynamic pooling)的卷积神经网络模型的事件抽取方法,来自论文《Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks》。这是一种pipeline方式的事件抽取方案,即对触发词的检测和识别、对论元的检测和识别两个任务是分开进行的,后者依赖于前者的预测结果。两个子任务都被转换成了多分类问题,模型都采用DMCNN原创 2020-10-17 23:49:23 · 6786 阅读 · 24 评论