tensorflow 数据加载

数据载入的三种形式:
一、直接使用numpy加载

        for i in range(train_data.shape[0]//batch_size):
            image_batch = train_data[i*batch_size:(i+1)*batch_size,:,:,np.newaxis]
            label_batch = train_label[i * batch_size:(i + 1) * batch_size]

二、使用tf.data.Dataset.from_tensor_slices加载

def load_dataset():
    # Step0 准备数据集, 可以是自己动手丰衣足食, 也可以从 tf.keras.datasets 加载需要的数据集(获取到的是numpy数据)
    # 这里以 mnist 为例
    (x, y), (x_test, y_test) = keras.datasets.mnist.load_data()

    # Step1 使用 tf.data.Dataset.from_tensor_slices 进行加载
    db_train = tf.data.Dataset.from_tensor_slices((x, y))
    db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))

    # Step2 打乱数据
    db_train.shuffle(1000)
    db_test.shuffle(1000)

    # Step3 预处理 (预处理函数在下面)
    db_train.map(preprocess)
    db_test.map(preprocess)

    # Step4 设置 batch size 一次喂入64个数据
    db_train.batch(64)
    db_test.batch(64)

    # Step5 设置迭代次数(迭代2次) test数据集不需要emmm
    db_train.repeat(2)


    return db_train, db_test


def preprocess(labels, images):
    '''
    最简单的预处理函数:
        转numpy为Tensor、分类问题需要处理label为one_hot编码、处理训练数据
    '''
    # 把numpy数据转为Tensor
    labels = tf.cast(labels, dtype=tf.int32)
    # labels 转为one_hot编码
    labels = tf.one_hot(labels, depth=10)
    # 顺手归一化
    images = tf.cast(images, dtype=tf.float32) / 255
    return labels, images

三、使用tf.train.string_input_producer加载

filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv"])

reader = tf.TextLineReader()
key, value = reader.read(filename_queue)

# Default values, in case of empty columns. Also specifies the type of the
# decoded result.
record_defaults = [[1], [1], [1], [1], [1]]
col1, col2, col3, col4, col5 = tf.decode_csv(
    value, record_defaults=record_defaults)
features = tf.concat(0, [col1, col2, col3, col4])

with tf.Session() as sess:
  # Start populating the filename queue.
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)

  for i in range(1200):
    # Retrieve a single instance:
    example, label = sess.run([features, col5])

  coord.request_stop()
  coord.join(threads)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值