【目标检测】边界框回归与variances参数的作用

本文主要讨论在目标检测中,对于边界框Bbox的回归,以及variances参数的作用。

1、边界框回归

针对目标检测问题,由于存在Anchor(固定的参考框),网络模型需要做到“对于一个Anchor,其中是否包含了我们关注的目标,其距离当前目标真实边框有多远”,因此可以将目标检测问题视为一个对于Anchor的回归问题。

有参考框P=\left ( P_{x},P_{y},P_{w},P_{h} \right )和真实框G=\left ( G_{x},G_{y},G_{w},G_{h} \right ),计算回归目标t

t_{x}=\frac{G_{x}-P{x}}{P_{w}}

t_{y}=\frac{G_{y}-P{y}}{P_{h}}

t_{w}=log(\frac{G_{w}}{P_{w}})

t_{h}=log(\frac{G_{h}}{P_{h}})

可以看出在参考框与真实框无线接近时,回归目标t接近于0。

2、variances参数的作用

在SSD算法中,在框的encod和decode中都增加了一个参数variances,其回归目标t为:

t_{x}=\frac{G_{x}-P{x}}{P_{w}\cdot center\_variances}

 t_{y}=\frac{G_{y}-P{y}}{P_{h}\cdot center\_variances}

t_{w}=log(\frac{G_{w}}{P_{w}}) / size\_variances

 t_{h}=log(\frac{G_{h}}{P_{h}})/size\_variances

center\_variances=0.1,size\_variances=0.2

参考:The meanings of parameter "variance" in PriorBox layer #75

可以近似认为是将优化目标t进行了方差为0.1的高斯分布,越小的方差带来的是更加紧凑的分布,有利于模型在训练阶段的收敛。简单点说就是在优化目标t较小时能够带来更大的损失,使模型更好地优化。

对于高斯分布带来的模型训练的提升,参考论文:Pairwise Gaussian Loss for Convolutional Neural Networks

 因此在预测阶段的decode中,同样需要variances参数

Pred_{x}=t_{x}*center\_variance*P_{w}+P_{x}

Pred_{y}=t_{y}*center\_variance*P_{h}+P_{y}

Pred_{w}=exp(t_{w}*size\_variance)*P_{w}

Pred_{h}=exp(t_{h}*size\_variance)*P_{h}

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值