LightOJ 1214 - Large Division【同余定理】

本文介绍了一种用于判断两个大整数之间是否可以整除的算法实现。该算法能够处理包含多达200位数字的大整数输入,并通过取模运算来判断整除性。输入包括多个测试用例,每个用例由两个整数构成,输出则是针对每个用例的判断结果。
1214 - Large Division
Time Limit: 1 second(s)Memory Limit: 32 MB

Given two integers, a and b, you should check whether a is divisible by b or not. We know that an integer a is divisible by an integer b if and only if there exists an integer c such that a = b * c.

Input

Input starts with an integer T (≤ 525), denoting the number of test cases.

Each case starts with a line containing two integers a (-10200 ≤ a ≤ 10200) and b (|b| > 0, b fits into a 32 bit signed integer). Numbers will not contain leading zeroes.

Output

For each case, print the case number first. Then print 'divisible' if a is divisible by b. Otherwise print 'not divisible'.

Sample Input

Output for Sample Input

6

101 101

0 67

-101 101

7678123668327637674887634 101

11010000000000000000 256

-202202202202000202202202 -101

Case 1: divisible

Case 2: divisible

Case 3: divisible

Case 4: not divisible

Case 5: divisible

Case 6: divisible

 


PROBLEM SETTER: JANE ALAM JAN
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char map[10000];
int main()
{
	int t;
	int uu=0;
	scanf("%d",&t);
	while(t--)
	{
		uu++;
		int nn;
		scanf("%s",map);
		int len=strlen(map);
		scanf("%d",&nn);
		long long ans=0;
		if(map[0]=='-')
		{
			for(int i=1;i<len;i++)
			{
				ans=ans*10+(map[i]-'0');
				ans=ans%nn;
			}
		}
		else
		{
			for(int i=0;i<len;i++)
			{
				ans=ans*10+(map[i]-'0');
				ans=ans%nn;
			}
		}
		printf("Case %d: ",uu);
		if(ans%nn==0)
		{
			printf("divisible\n");
		}
		else
		printf("not divisible\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值