【Leetcode】300. Longest Increasing Subsequence(最大上升子序列)

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [10,9,2,5,3,7,101,18]
Output: 4 
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4. 

Note:

  • There may be more than one LIS combination, it is only necessary for you to return the length.
  • Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

题目大意:

给出一个未排序的序列,从其中找出最长的上升子序列(子序列可以不连续)。

解题思路:

给出两种解题思路。

第一种时间复杂度为n^2,方法比较直观,可以直接理解成为寻找到当前位置之前比其小的最长为,+1记录到当前位置中。

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int ans = 0;
        
        if(nums.size()==0) return ans;
        // 从当前位置向前找到第一个比其小的数,当前个数加一
        vector<int> dp(nums.size(), 0);
        dp[0] = 1;
        ans = 1;
        for(int i=1;i<nums.size();i++){
            int cor_max = 0;
            for(int j=i-1;j>=0;j--){
                if(nums[j]<nums[i]){
                    cor_max = max(cor_max, dp[j]);
                }
            }
            if(cor_max==0){
                dp[i] = 1;
            }else{
                dp[i] = cor_max + 1;
            }
            ans = max(dp[i], ans);
        }
        
        return ans;
    }
};

 第二种时间复杂度为nlog(n),利用C++中的二分查找函数Binary Search。

在dp数组中我们只需要查找第一个大于或等于当前元素的位置。更新保持dp数组中都是满足增长的最小数据,最终统计dp的长度即可。

input: [0, 8, 4, 12, 2]

dp: [0]

dp: [0, 8]

dp: [0, 4]

dp: [0 , 2, 12] 

 

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp;
        for(int i=0;i<nums.size();i++){
            auto idx = lower_bound(dp.begin(), dp.end(), nums[i]);
            if(idx == dp.end()){
                dp.push_back(nums[i]);
            }else{
                *idx = nums[i];
            }
        }
        return dp.size();
    }
};

dp: [0, 4, 12]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值