Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input:[10,9,2,5,3,7,101,18]
Output: 4 Explanation: The longest increasing subsequence is[2,3,7,101], therefore the length is 4.
Note:
- There may be more than one LIS combination, it is only necessary for you to return the length.
- Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
题目大意:
给出一个未排序的序列,从其中找出最长的上升子序列(子序列可以不连续)。
解题思路:
给出两种解题思路。
第一种时间复杂度为n^2,方法比较直观,可以直接理解成为寻找到当前位置之前比其小的最长为,+1记录到当前位置中。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int ans = 0;
if(nums.size()==0) return ans;
// 从当前位置向前找到第一个比其小的数,当前个数加一
vector<int> dp(nums.size(), 0);
dp[0] = 1;
ans = 1;
for(int i=1;i<nums.size();i++){
int cor_max = 0;
for(int j=i-1;j>=0;j--){
if(nums[j]<nums[i]){
cor_max = max(cor_max, dp[j]);
}
}
if(cor_max==0){
dp[i] = 1;
}else{
dp[i] = cor_max + 1;
}
ans = max(dp[i], ans);
}
return ans;
}
};
第二种时间复杂度为nlog(n),利用C++中的二分查找函数Binary Search。
在dp数组中我们只需要查找第一个大于或等于当前元素的位置。更新保持dp数组中都是满足增长的最小数据,最终统计dp的长度即可。
input: [0, 8, 4, 12, 2]
dp: [0]
dp: [0, 8]
dp: [0, 4]
dp: [0 , 2, 12]
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp;
for(int i=0;i<nums.size();i++){
auto idx = lower_bound(dp.begin(), dp.end(), nums[i]);
if(idx == dp.end()){
dp.push_back(nums[i]);
}else{
*idx = nums[i];
}
}
return dp.size();
}
};
dp: [0, 4, 12]