python数据挖掘
文章平均质量分 62
文龙z
这个作者很懒,什么都没留下…
展开
-
jupyter notebook读取mysql数据库
一、首先安装pymysql驱动1.打开Anaconda 命令窗口:Anaconda Prompt (anaconda3)2.安装pymysql:pip install pymysql二、打开 jupyter notebook进行数据库操作1.首先导入pandas 和sqlalchemyimport pandas as pdimport sqlalchemy as sqla# 创建连接:root后输mysql数据库密码,@后输入mysql ip地址,然后斜杠后接数据库名db =原创 2020-07-11 14:28:46 · 6354 阅读 · 2 评论 -
(九)逻辑回归多分类应用
逻辑回归(Logistics Regression)属于分类算法,最适合解决二分类问题,当然也可以解决多分类问题一、鸢尾花案例1.1 OvR:(One vs Rest)一对剩余import numpy as npfrom sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegressioniris .原创 2021-04-22 22:58:52 · 1724 阅读 · 0 评论 -
(八)梯度下降法
一、 什么是梯度下降法最简单讲对于一个损失函数,求在θ取某个值时J(损失)最小的一种思想示例import numpy as npimport matplotlib.pyplot as pltplot_x = np.linspace(-1, 6, 140)plot_y = (plot_x-2.5)**2-1# 损失函数plt.plot(plot_x, plot_y)plt.show()基于搜索的最优化方法作用:最小化一个损失函数...原创 2021-04-17 16:36:13 · 480 阅读 · 1 评论 -
(七)PCA数据降维
一、PCA(Principle Component Analysis)作用:数据降维,便于理解其他作用:可视化、去噪基本原理:数据所有样本点映射到一个新轴,保持所有样本间方差最大,此时样本保持原有特性最多,区分度也最大,实现了降维二、手写数字识别案例2.1 准备import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsdigits = datasets.load_digi.原创 2021-03-26 12:11:44 · 2016 阅读 · 0 评论 -
(六)线性回归算法
1 .导入包import numpy as npimport matplotlib.pylab as pltfrom sklearn import datasetsboston = datasets.load_boston()boston.keys()dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])print(boston.DESCR)2. 获取数据:这里未做数据清洗x =..原创 2021-03-21 22:28:25 · 497 阅读 · 0 评论 -
(五)K近邻算法(KNN)
一、鸢尾花案例import numpy as npimport matplotlib.pylab as pltfrom sklearn import datasetsiris = datasets.load_iris()iris.keys()dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])x = iris.datay = iris.targetprin.原创 2021-03-18 16:48:15 · 490 阅读 · 2 评论 -
(二)numpy和padas
一、Numpy1.1 创建# 类型转换方式创建a = np.array([1,2,3]) # array([1, 2, 3])b = np.array([[1,2,3],[4,5,6],[7,8,9]])''' array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])'''# 批量创建print( np.arange(6)) # [0 1 2 3 4 5]print(np.arange(2,6,1)) # [2 3原创 2021-03-15 17:10:34 · 260 阅读 · 0 评论 -
(三)Matplotlib数据可视化
案例数据:https://cloud.189.cn/t/aYbUv2JbEzUn一、柱状图:有意义的是它的高度# 导入包import pandas as pdimport seaborn as snsimport numpy as npimport matplotlib.pyplot as plt# 读取数据df=pd.read_csv("./data/HR.csv")s = df["salary"]df.head(4)# 柱状图plt.title("SALARY"原创 2021-03-12 16:44:42 · 269 阅读 · 0 评论 -
(四)单一因子简单分析
案例数据:https://cloud.189.cn/t/aYbUv2JbEzUn一、python数据挖掘相应扩展库扩展库 简介 NumPy 提供数组支持以及相应的高效的处理函数 SciPy 提供矩阵支持以及矩阵相关的计算模块 Matplotlib 可视化、作图工具 pandas 数据分析、探索工具 scikit-learn 回归、分类、聚类等强大的机器学习库 Keras 深度学习,建立神经网络以及深度学习模型 二、数据特征分析原创 2021-03-12 11:24:18 · 448 阅读 · 0 评论 -
(一)centos7安装jupyter notebook
一、获取jupyter notebookwget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh二、开始安装:一路默认sh Anaconda3-2020.11-Linux-x86_64.sh三、生成密码# 进入到jupyter 的安装bin目录cd /root/anaconda3/bin/# 生成jupyter notebook的配置文件./jupyter no...原创 2021-03-10 17:15:07 · 394 阅读 · 0 评论