正规方程求解特征参数的推导过程

转载自https://blog.csdn.net/chenlin41204050/article/details/78220280

设有m个训练实例,每个实例有n个特征,则训练实例集为:

这里写图片描述 
其中这里写图片描述表示第i个实例第j个特征。

特征参数为:

 

这里写图片描述

输出变量为:

这里写图片描述

故代价函数为:

这里写图片描述

进行求导,等价于如下的形式:

这里写图片描述

  • 其中第一项:

这里写图片描述

  • 第二项:
  • 这里写图片描述 
    该矩阵求导为分母布局下的标量/向量形式: 
    故有, 
    这里写图片描述

  • 第三项:
  • 这里写图片描述 
    该矩阵求导为分母布局下的标量/向量形式: 
    故有: 
    这里写图片描述

  • 第四项:
  • 这里写图片描述 
    其中这里写图片描述为标量,可看成一个常数。 
    该矩阵求导为分母布局下的标量/向量形式: 

  • 故有: 
    这里写图片描述

    综上,正规方程为:

    这里写图片描述

    最终可得特征参数的表示:

    这里写图片描述

 

梯度下降与正规方程的比较:

梯度下降

正规方程

需要选择学习率

不需要

需要多次迭代

一次运算得出

当特征数量n大时也能较好适用

需要计算如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为  ,通常来说当n小于10000 时还是可以接受的

适用于各种类型的模型

只适用于线性模型,不适合逻辑回归模型等其他模型

总结:

只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值