基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别

背景及意义

犬类检测与种类识别技术不仅能够提升社会治理效率、改进公众安全与健康水平,同时还能促进人们对动物福利的关注。本文基于YOLOv8深度学习框架,通过20630张图片,训练了一个进行犬类检测与识别的检测模型,可进行120种犬类的检测与识别,平均准确率为82%。并基于此模型开发了一款带UI界面的犬类检测与识别系统,更方便进行功能的展示。该系统是基于python与PyQT5开发的,支持图片、视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。

前言

💗博主介绍:全网粉丝10W+,、专注于深度学习,机器学习等,Python,Java、小程序技术领域和毕业项目实战✌💗
💗 可定制 毕设 项目,全程指导+远程!!!
👇🏻 精彩专栏 推荐订阅👇🏻
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

详细视频演示

请联系我获取更详细的演示

部分截图如下:

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

技术栈

Python语言;
机器学习/深度学习相关算法;
YOLOv;
Django框架;
前端框架Vue;
MySQL数据库;
前后端;

数据集

本项目提供有训练数据集

核心代码

# coding:utf-8
__author__ = "ila"

from django.http import JsonResponse

from .users_model import users
from util.codes import *
from util.auth import Auth
import util.message as mes
from dj2.settings import host,port,user,passwd,dbName,hasHadoop

def users_login(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")
        if req_dict.get('role')!=None:
            del req_dict['role']
        
        datas = users.getbyparams(users, users, req_dict)
        if not datas:
            msg['code'] = password_error_code
            msg['msg'] = mes.password_error_code
            return JsonResponse(msg)

        req_dict['id'] = datas[0].get('id')
        return Auth.authenticate(Auth, users, req_dict)


def users_register(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")

        error = users.createbyreq(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_session(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}

        req_dict = {"id": request.session.get('params').get("id")}
        msg['data'] = users.getbyparams(users, users, req_dict)[0]

        return JsonResponse(msg)


def users_logout(request):
    if request.method in ["POST", "GET"]:
        msg = {
            "msg": "退出成功",
            "code": 0
        }

        return JsonResponse(msg)


def users_page(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code,
               "data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
        req_dict = request.session.get("req_dict")
        tablename = request.session.get("tablename")
        try:
            __hasMessage__ = users.__hasMessage__
        except:
            __hasMessage__ = None
        if __hasMessage__ and __hasMessage__ != "否":

            if tablename != "users":
                req_dict["userid"] = request.session.get("params").get("id")
        if tablename == "users":
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = users.page(users, users, req_dict)
        else:
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = [],1,0,0,10

        return JsonResponse(msg)


def users_info(request, id_):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}

        data = users.getbyid(users, users, int(id_))
        if len(data) > 0:
            msg['data'] = data[0]
        # 浏览点击次数
        try:
            __browseClick__ = users.__browseClick__
        except:
            __browseClick__ = None

        if __browseClick__ and "clicknum" in users.getallcolumn(users, users):
            click_dict = {"id": int(id_), "clicknum": str(int(data[0].get("clicknum", 0)) + 1)}
            ret = users.updatebyparams(users, users, click_dict)
            if ret != None:
                msg['code'] = crud_error_code
                msg['msg'] = ret
        return JsonResponse(msg)


def users_save(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
        req_dict = request.session.get("req_dict")
        req_dict['role'] = '管理员'
        error = users.createbyreq(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_update(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
        req_dict = request.session.get("req_dict")
        if req_dict.get("mima") and req_dict.get("password"):
            if "mima" not in users.getallcolumn(users,users):
                del req_dict["mima"]
            if "password" not in users.getallcolumn(users,users):
                del req_dict["password"]
        try:
            del req_dict["clicknum"]
        except:
            pass
        error = users.updatebyparams(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_delete(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
        req_dict = request.session.get("req_dict")

        error = users.deletes(users,
            users,
            req_dict.get("ids")
        )
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


源码获取:

文章下方名片联系我即可~
✌💗大家点赞、收藏、关注、评论啦 、查看✌💗
👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏👇🏻

<think>好的,我现在要回答用户关于如何设计和实现基于深度学习识别系统的问题。首先,我需要整理用户提供的引用内容,看看有没有相关的信息可以借鉴。引用[1]、[2]、[3]都是关于车牌识别或手写识别的系统,虽然主题不同,但设计流程可能有共通之处。 首先,用户想知道模型架构的选择。在引用[2]中提到了使用R-CNN模型进行目标检测和分,这可能适用于识别,因为需要先定位的位置再进行品种分。不过,识别可能更侧重于分而非检测,所以可能需要结合分模型,比如ResNet、EfficientNet或者Vision Transformer。引用[1]和[3]提到使用深度学习模型,但没有具体说明架构,所以可能需要参考常见的图像分模型。 接下来是数据集的选择。引用[2]提到使用MNIST等手写数据集,但识别需要专门的品种数据集。比如Stanford Dogs Dataset或ImageNet的子集。数据增强和预处理也是关键步骤,引用[1]和[3]中提到的数据增强方法可以参考,比如随机裁剪、旋转、调整亮度等。 训练方法方面,引用[1]和[3]提到了迁移学习,这非常适合识别,尤其是在数据量有限的情况下。使用预训练模型如ResNet-50,并在顶部添加自定义的全连接层进行微调。损失函数通常用交叉熵损失,优化器如Adam或SGD。学习率调整和正则化方法(如Dropout)也很重要,防止过拟合。 系统实现部分,引用[2]提到了UI开发和系统集成,可能需要使用Flask或Django构建后端,前端用React或Vue.js。部署方面可以考虑使用Docker容器化,或者云服务如AWS、Azure。 验证和测试部分,引用[1]和[3]都进行了功能测试和性能测试,需要计算准确率、混淆矩阵等指标,并可视化结果。 可能的问题点包括数据集别不平衡,某些品种样本不足,需要数据增强或采用加权损失函数。模型可能过拟合,需要早停法或更多的正则化。另外,实际部署时的推理速度也很重要,可能需要模型轻量化,如使用MobileNet架构。 最后,根据引用内容,用户可能需要生成相关问题,比如模型优化、数据集处理、部署方法等。需要确保回答结构清晰,分点说明,并正确引用提供的资料,尽管这些引用主要关于车牌识别,但设计思路是似的,可以适当调整。</think>### 设计实现基于深度学习品种识别系统 #### 1. **模型架构选择** - **核心模型**:通常采用预训练的卷积神经网络(CNN)作为基础架构,例如: - **ResNet-50/101**:通过残差结构解决深度网络梯度消失问题,适合提取复杂图像特征[^1]。 - **EfficientNet**:通过复合缩放方法平衡模型深度、宽度和分辨率,在计算资源有限时表现优异。 - **Vision Transformer (ViT)**:将图像分块输入Transformer架构,适合大规模数据集和高分辨率图像。 - **改进方向**: - 在预训练模型顶部添加全连接层(如$512 \times N$,$N$为种类别数)。 - 使用迁移学习(Transfer Learning)微调模型参数,适应特定品种特征[^3]。 #### 2. **数据集选择处理** - **常用数据集**: - **Stanford Dogs Dataset**:包含120个品种、20,580张标注图像。 - **ImageNet-Dog子集**:从ImageNet中提取的别数据。 - **自定义数据集**:通过爬虫或众包平台收集,需标注品种标签。 - **数据增强**: - 基础增强:随机裁剪、旋转、翻转、亮度/对比度调整。 - 高级增强:Mixup、CutMix、AutoAugment等算法生成合成数据[^2]。 #### 3. **训练方法优化** - **训练流程**: 1. 输入图像归一化为$224 \times 224$分辨率(符合CNN输入规范)。 2. 使用交叉熵损失函数:$$L = -\sum_{i=1}^N y_i \log(p_i)$$ 3. 优化器选择: - Adam或AdamW(学习率$3e-4$,权重衰减$0.01$) - SGD + Momentum(初始学习率$0.1$,余弦退火调整) 4. 正则化方法:Dropout(概率$0.5$)、Label Smoothing、权重L2正则化。 - **分布式训练**: - 使用PyTorch的`DataParallel`或`DistributedDataParallel`加速训练。 - 混合精度训练(FP16)减少显存占用。 #### 4. **系统实现部署** - **技术栈**: - 框架:PyTorch或TensorFlow - 部署工具:ONNX格式转换、TensorRT加速 - 后端服务:Flask/Django提供RESTful API - 前端界面:React/Vue.js实现图像上传结果展示 - **轻量化方案**: - 模型压缩:知识蒸馏(如用ResNet-50指导MobileNet训练) - 量化感知训练(QAT)降低推理时计算资源需求。 #### 5. **性能验证改进** - **评估指标**: - Top-1/Top-5准确率 - 混淆矩阵分析易混淆品种(如哈士奇 vs 阿拉斯加) - **改进策略**: - 引入注意力机制(如SE-Net、CBAM模块) - 多模型融合(Ensemble Learning) - 细粒度识别技术(局部特征对齐) ```python # 示例代码(PyTorch模型定义) import torchvision.models as models from torch import nn class DogBreedClassifier(nn.Module): def __init__(self, num_classes=120): super().__init__() self.backbone = models.resnet50(pretrained=True) self.backbone.fc = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512, num_classes) ) def forward(self, x): return self.backbone(x) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值