在对数据进行预处理时,应该怎样处理类别型特征?

类别型主要指性别,血型等只有在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少量模型能直接处理字符串形式的输入,对于逻辑回归,支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。

在对数据进行预处理时,应该怎样处理类别型特征?

  1. 序号编码 Ordinal Encoding

      序号编码通常处理类别间具有大小关系的数据。例如成绩,可以分为低,中,高三档,并且存在高>中>低的排序关系。序号编码会按照大小关系对类别型特征赋予一个数值ID,例如高 ,中,低表示  3,2,1转换后依然保留大小 关系。

2.独热编码One-hot Encoding

独热编码通常处理类别间不具有大小关系的特征。例如血型,一共有4取值(A,B,AB,O),独热编码会把血型变成一个4维稀疏向量。

A表示(1000),B表示(0100),AB(0010) ,O表示(0001)

使用稀疏向量来节省空间,在独热编码下,特征向量只有某一维取值为1,其他位置取值均为0.因此可以利用向量的稀疏表示有效的节省空间,并且目前大部分算法都支持稀疏向量的输入。

配合特征选择来降低维度。高纬度特征会带来几方面的问题。

一是K近邻算法中,高维空间下两点之间的距离很难得到有效的衡量;

二是在逻辑回归模型中,参数的数量会随着维度的增高而增加,容易引起过拟合的问题;

三是通常只有部分维度是对分类,预测有帮助,因此可以考虑配合特征选择来降低维度;

 

3.二进制编码Binary Enconing

二进制编码先用序号编码给每个类别赋予一个类别ID ,然后将类别ID 对应的二进制编码作为结果。

二进制编码本质利用了二进制对ID 进行哈希映射,最终得到0/1特征向量,且维度小于独热编码,节省了存储空间

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 对于同包含数值特征类别特征数据集,可以使用sklearn中的Pipeline和ColumnTransformer来进行预处理。 具体步骤如下: 1. 导入需要的库和数据集 ```python import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder # 读取数据集 data = pd.read_csv('data.csv') ``` 2. 划分数值特征类别特征 ```python # 数值特征 numeric_features = ['age', 'income'] # 类别特征 categorical_features = ['gender', 'education', 'marital_status'] ``` 3. 构建ColumnTransformer对象 ```python # 数值特征的Pipeline numeric_transformer = Pipeline(steps=[('scaler', StandardScaler())]) # 类别特征的Pipeline categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) # ColumnTransformer preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) ``` 4. 调用fit_transform()方法对数据进行预处理 ```python # 对数据进行预处理 X = preprocessor.fit_transform(data) ``` 完整代码如下: ```python import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder # 读取数据集 data = pd.read_csv('data.csv') # 数值特征 numeric_features = ['age', 'income'] # 类别特征 categorical_features = ['gender', 'education', 'marital_status'] # 数值特征的Pipeline numeric_transformer = Pipeline(steps=[('scaler', StandardScaler())]) # 类别特征的Pipeline categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) # ColumnTransformer preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) # 对数据进行预处理 X = preprocessor.fit_transform(data) ``` 这样就可以将同包含数值特征类别特征数据进行预处理了。 ### 回答2: 对于同包含数值特征类别特征数据集,我们可以采用以下步骤进行预处理: 1. 首先,导入所需的库和数据集。假设我们的数据集名称为`dataset`,其中包含数值特征`numerical_features`和类别特征`categorical_features`。 ```python import pandas as pd dataset = pd.read_csv('dataset.csv') ``` 2. 处理数值特征。我们可以使用标准化或归一化的方法将数值特征缩放到一个特定的范围,以便LSTM网络更好地处理。我们可以使用`MinMaxScaler`类来完成这个任务。 ```python from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() scaled_numerical_features = scaler.fit_transform(dataset['numerical_features'].values.reshape(-1, 1)) ``` 3. 处理类别特征。对于类别特征,我们需要将其转换为数值特征,以便LSTM网络能够处理。我们可以使用独热编码(One-Hot Encoding)的方法将类别特征转换为二进制的指示变量。 ```python encoded_categorical_features = pd.get_dummies(dataset['categorical_features']) ``` 4. 将处理后的数值特征类别特征合并为一个新的数据集。 ```python preprocessed_dataset = pd.concat([pd.DataFrame(scaled_numerical_features, columns=['scaled_numerical_features']), encoded_categorical_features], axis=1) ``` 5. 可以根据需求进行进一步的操作,比如将数据集拆分为训练集和测试集,以及其他数据预处理的步骤。 以上就是使用LSTM网络预处理包含数值特征类别特征数据集的步骤。请注意,这只是一个简单的示例,实际应用中可能需要根据具体情况进行更多的数据清洗和预处理操作。 ### 回答3: 对于同包含数值特征类别特征数据集,我们可以通过以下步骤进行预处理: 1. 导入所需的库。 ```python import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from keras.preprocessing.sequence import TimeseriesGenerator ``` 2. 加载数据集。 ```python data = pd.read_csv('dataset.csv') # 替换为实际数据集的路径 ``` 3. 分割特征和目标变量。 ```python features = data.drop(columns=['target']) target = data['target'] ``` 4. 对数值特征进行标准化。 ```python scaler = MinMaxScaler() num_features = features.select_dtypes(include=['float64']) # 假设数值特征为float64类 num_features_scaled = scaler.fit_transform(num_features) ``` 5. 对类别特征进行独热编码。 ```python cat_features = features.select_dtypes(include=['object']) # 假设类别特征为object类 encoder = OneHotEncoder() cat_features_encoded = encoder.fit_transform(cat_features).toarray() ``` 6. 合并处理后的特征。 ```python processed_features = np.concatenate((num_features_scaled, cat_features_encoded), axis=1) ``` 7. 使用间序列生成器创建LSTM输入序列。 ```python sequence_length = 10 # 设置输入序列的长度 generator = TimeseriesGenerator(processed_features, target, length=sequence_length, batch_size=1) ``` 通过以上步骤,我们可以对包含数值类别特征数据进行预处理,并创建适用于LSTM网络的输入序列。请注意,在实际使用中可能需要根据数据集的具体情况进行一些调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值