线性代数基础知识点回顾与总结(一):行列式与矩阵

线性代数基础知识点回顾与总结(一):行列式与矩阵
介绍

  • 骨骼图
    在这里插入图片描述

1.行列式

排列: 1,2,···,n组成的有序数组称为n阶排列。

逆序:大数排在小数前。自然排列为偶排列。
在这里插入图片描述
n阶行列式的值等于不同行的n个元素的乘积的代数和:
在这里插入图片描述
:主对角元素减副对角元素的求法只适用于2或3阶行列式的计算中。

三角行列的值:
在这里插入图片描述
:副主对角时要考虑正负号:
在这里插入图片描述
方阵行列式(n*n):
  ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ ; ∣ A 2 ∣ = ∣ A ∣ 2   . \ |AB|=|A|·|B|; |A^{2}|=|A|^{2}\,.  AB=AB;A2=A2.

行列式

1.交换两行位置正负号改变。

推论:

  • 两行相同或成比例,行列式为0

2.某行k倍加到另一行,值不变。
3.

在这里插入图片描述
4.
在这里插入图片描述
5. n阶行列式都可以写成两数之和,可以拆分成2^n个行列式之和。

例如2阶的:
在这里插入图片描述
在这里插入图片描述
代数余子式(cofactor)

a(I,j)的代数余子式为):在这里插入图片描述
行列中_的意思是去掉第i行第j列,剩下的称为第(i,j)个元素的余子式。

行列式=某列(行)的每一个元素*它的代数余子式之和。
某行(列)元素与另一行(列)元素的代数余子式的乘积为0。

范德蒙行列(Vandermonde)
在这里插入图片描述
例子:在这里插入图片描述
拉普拉斯定理(Laplace)

A、B、C都是行列。
在这里插入图片描述
推广:
在这里插入图片描述

2.矩阵

矩阵:m*n个数排列成m行n列的表格。若m=n,则称为n阶矩阵。

克莱姆法则(Cramer’s Rule):AX=b,若|A|≠0,则存在唯一的解,其解为:在这里插入图片描述
其中,D为系数矩阵的值。

在这里插入图片描述
b在第j列。

对比齐次方程组AX=0,若|A|≠0,则只有0解。
若齐次方程组有非零解,则要求系数行列式|A|=0。

运算法则:

  • A(BC)=A(BC)
  • A(B+C)=AB+AC;
  • (A+B)C=AC+BC;
  • A(B+C)D=ABD+ACD

:AB≠BA;AB=0(不能推出) A=0或B=0;AB=AC(不能推出)B=C

转置:在这里插入图片描述
方阵

  • 仅有方阵才有行列式
  • 方阵A=0与|A|=0不要搞混

对称矩阵(symmetric matrix)
在这里插入图片描述
反矩阵(shew-symmetric matrix):
在这里插入图片描述
伴随矩阵(adjugate matrix):

这里由于翻译、符号等问题,很多小朋友搞不清楚伴随矩阵、伴随变换。

伴随矩阵(adjugate) 指的是由矩阵的代数余子式构成的矩阵的转置,用A表示,严谨点可以用adj(A)表示,这样不会发生歧义。
伴随变换(adjoint)也称共轭变换,指的是共轭转置矩阵,也叫**埃尔米特矩阵(Hermitian Matri)**用在这里插入图片描述
表示,国内用A
表示伴随矩阵,因此用后者不会产生歧义。

在这里插入图片描述
埃尔米特矩阵(Hermitian Matri)
在这里插入图片描述
例如:
在这里插入图片描述
如果A,B都是埃尔米特矩阵,则A+B也是埃尔米特矩阵;如果满足交换律AB=BA,则AB也是埃尔米特矩阵。

共轭矩阵(conjugate) 指矩阵的所有元素取共轭,用conj(A)表示,或
在这里插入图片描述
对于伴随矩阵:
在这里插入图片描述
在这里插入图片描述
可逆矩阵(Invertible matrix):

A·B=E (B为A的逆矩阵)(前提:A与B同阶
在这里插入图片描述
如果A,B可逆,则:
在这里插入图片描述在这里插入图片描述

对角矩阵:
在这里插入图片描述在这里插入图片描述
分块矩阵(partitioned matrix)
运算:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
初等矩阵
单位矩阵经过一次初等变换得到的矩阵。
初等变换

  1. 倍乘
  2. 倍加
  3. 行互换

等价矩阵
A经过有限次初等变换得到B。A等价于B记为:
在这里插入图片描述
性质:

反身性,对称性,传递性:
在这里插入图片描述
例:
在这里插入图片描述
A,B等价
在这里插入图片描述

行阶梯矩阵(Row-Echelon Form):

  1. 0行在最底部
  2. 非0主元下面全为0

例:
在这里插入图片描述
行最简矩阵(Row-simplest form):

非0主元都为1且上下全为0。
例:(主元下画了横线)
在这里插入图片描述
正交矩阵(Orthogonal matrix)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
若矩阵A、B为正交矩阵,则AB也为正交矩阵。

任何对称矩阵、正交矩阵都可以被对角化。

这句话我们可以这样理解,正交矩阵可以看作三维空间中被随意摆放的立方体,而对角化就是将齐摆正。直观上讲就是,任何一个歪着的立方体,都可以被摆正。(当然在这里,我们不讨论虚数的情况。)

相似矩阵(Similarity matrix)
在这里插入图片描述
相似矩阵可以理解为同一个线性变换在不同基上的矩阵。

性质: 反身性,对称性,传递性

在这里插入图片描述
(如果从 相似矩阵是同一个线性变换在不同基上的矩阵 这个角度理解的换,上面结论将变得理所当然。)

在这里插入图片描述

  • A有n个线性无关的特征向量
  • 若有k重特征值,则该特征值必有k个线性无关的特征向量。

实对称矩阵:

矩阵元素全为实数,且
在这里插入图片描述
其特征值全为实数,不同特征值对应的特征向量必正交。

总存在正交矩阵Q,使得:在这里插入图片描述
A与对角矩阵相似。A的特征值与对角矩阵主对角元素相同。

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值