深度学习(一)深度前馈网络(deep feedforward network)
深度前馈网络(deep feedforward network),也叫作 前馈神经网络(feedforward neural network)或者 多层感知机(multilayer perceptron, MLP)。
前馈网络的目标是近似某个函数 。
前馈网络主要干两件事:定义一个映射 y = f(x; θ);学习这个映射里的参数 θ 的 值,使它能够得到最佳的函数近似。
这样的模型被称为是 前向(feedforward)的,这是因为原始信息流过x的函数以及(用于定义)f的中间计算过程,最终到达输出 y。在模型的输出和模型本身之间没有 反馈(feedback)连接。当前馈神经网络被扩展成包含反馈连接时,它们被称为 循环神经网络(recurrent neural network)。(简单来说前馈神经网络就是,学习从 x 到 y 的确定性映射并且没有反馈连接。)
前馈神经网络被称作 网络(