微积分知识点回顾与总结(九):曲线与曲面积分,格林,高斯,斯托克斯公式

本文回顾了微积分中的曲线与曲面积分,重点介绍了格林、高斯和斯托克斯公式。对于曲线积分,包括对弧长和坐标的积分,强调了积分方向的重要性。格林公式阐述了二维区域与边界之间的关系。在曲面积分部分,讨论了对面积的积分以及高斯公式,该公式展示了三维空间中积分与边界的关系。最后,提到了斯托克斯公式在三维空间曲线积分的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微积分知识点回顾与总结(九):曲线与曲面积分格林,高斯,斯托克斯公式

  • 1.曲线积分
    • 1.1对弧长的曲线积分
    • 1.2对坐标的曲线积分
    • 1.3计算方法
      • 1.3.1定积分法
      • 1.3.2格林公式(Green)
  • 2.曲面积分
    • 2.1对面积的曲面积分
    • 2.2对坐标的曲面积分
    • 2.3高斯公式(Gauss)
  • 3.三维空间对坐标的曲线积分
    • 3.1基本方法:定积分法
    • 3.2曲面积分——斯托克斯stokes公式

首先回顾一下之前的弧微分和弧长:
弧微分:
在这里插入图片描述
弧长:
在这里插入图片描述
我们发现弧长就是给弧微分积分。

1.曲线积分

1.1对弧长的曲线积分:
其实在计算题目时其算法弧长的算法一样。唯一需要注意的是曲线是有方向的,所以要注意积分的上下限

❤️1.2对坐标的曲线积分(第二类曲线积分):
性质:在这里插入图片描述
1.3计算方法:
1.3.1定积分法
(1)直角坐标法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)参数方程法:
在这里插入图片描述
在这里插入图片描述
1.3.2域与边界的关系——格林公式(Green):
域与边界的关系就是积分范围与积分边界的关系。
单连通区域:(逆时针为正方向)
在这里插入图片描述
多连通区域(外边界顺时针为正方向,内边界逆时针为正方向。)
在这里插入图片描述
定义:
设D为连通区域(单,双),L为D的正向边界。
P(x,y)、Q(x,y)在D上连续可偏导。
则:
在这里插入图片描述

2.曲面积分

2.1第一类曲面积分:
在这里插入图片描述
1.替换
2.奇偶行、对称性
3.化为二重积分:

假设向XOY面投影:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.2对坐标的曲面积分:
在这里插入图片描述
方法一:二重积分法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
人站在x轴正方向,前+后—
在这里插入图片描述

2.3域与边界的关系——高斯公式(Gauss): (三重积分法)

抽象理解这里的边界与域:鸡蛋壳。
定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Tip:
在这里插入图片描述
假设曲面关于XOY的图及方向都对称,且P为z的偶函数,则:
在这里插入图片描述

3.三维空间对坐标的曲线积分:

在这里插入图片描述
3.1基本方法:定积分法
在这里插入图片描述
在这里插入图片描述

3.2曲面积分——斯托克斯stokes公式:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值