【MATLAB第101期】基于MATLAB的sobol二阶指数计算的探讨

【MATLAB第101期】基于MATLAB的sobol二阶指数计算的探讨

在MATLAB中计算Sobol二阶效应指数通常涉及到全局敏感性分析(Global Sensitivity Analysis, GSA),其中Sobol方法是一种流行的技术,用于评估模型输入参数的敏感性。Sobol二阶效应指数衡量的是两个参数之间的交互作用对模型输出的影响。

Sobol二阶效应指数的计算涉及到以下步骤:

1.生成Sobol序列:首先,你需要生成一个Sobol序列,这是一个低差异性的样本点集,用于评估模型。

2.模型评估:对于每个样本点,计算模型的输出。

3.计算Sobol指数:使用Sobol序列和模型输出,计算每个参数的一阶和二阶效应指数。

Sobol二阶效应指数的计算公式如下:
在这里插入图片描述

20250105更新

一、简介

在MATLAB中计算Sobol二阶效应指数通常涉及到全局敏感性分析(Global Sensitivity Analysis, GSA),其中Sobol方法是一种流行的技术,用于评估模型输入参数的敏感性。Sobol二阶效应指数衡量的是两个参数之间的交互作用对模型输出的影响。

Sobol二阶效应指数的计算涉及到以下步骤:

1、生成Sobol序列,并在一阶的基础上,生成N=(2D+2)*npop个样本集,其中D为变量数, npop为采样的数量, N为总样本数 。
在一阶基础上,N=(D+2)*nPop样本, 包含A、AB和B矩阵。
二阶需要生成BA矩阵,用来评估二阶指数。

2、模型计算
可参考64期文章, 利用sobol函数进行抽样,得到的X值 ,通过bp组成的代理模型进行计算。

3、计算Sobol指数:使用Sobol序列和模型输出,计算每个参数的一阶、二阶效应指数和总效应指数, 其中,一阶和总效应指数较为好计算, 二阶效应指数可以参考python的Salib库进行研究 ,

Sobol二阶效应指数的计算公式如下:
在这里插入图片描述
其中i为1:D,j为i+1:D,
4、计算效果
在这里插入图片描述

在这里插入图片描述

二、部分源码

S2计算代码如下:

 Vjk = mean(BAj .* ABk - A .* B) / var(y);
    Sj = first_order(A, ABj, B);
    Sk = first_order(A, ABk, B);
    S2 = Vjk - Sj - Sk;

核心参考代码如下(需要自行二次编译):



    % Normalize the model output
    Y = (Y - mean(Y)) / std(Y);
    % Separate output values
    A = Y(1:2*D+2:end);
    B = Y((end-1):-(2*D+1):1);
    AB = zeros(length(Y)/ (2*D+2), D);
        BA = zeros(length(Y)/ (2*D+2), D);
        for j = 1:D
            AB(:, j) = Y((j+1):2*D+2:end);
            BA(:, j) = Y((j+1+D):2*D+2:end);
        end
    end

    % Calculate second order indices if required

        for j = 1:D
            for k = j+1:D
                Si.S2(j, k) = second_order(A, AB(:, j), AB(:, k), BA(:, j), B);
end
end
function S = first_order(A, AB, B)
    % First order estimator following Saltelli et al. 2010 CPC, normalized by
    % sample variance
    y = [A, B];
    if range(y) == 0
        warning('Constant values encountered, indicating model evaluations (or subset of evaluations) produced identical values.');
        S = 0;
        return;
    end
    S = mean(B .* (AB - A)) / var(y);
end

function S = total_order(A, AB, B)
    % Total order estimator following Saltelli et al. 2010 CPC, normalized by
    % sample variance
    y = [A, B];
    if range(y) == 0
        warning('Constant values encountered, indicating model evaluations (or subset of evaluations) produced identical values.');
        S = 0;
        return;
    end
    S = 0.5 * mean((A - AB) .^ 2) / var(y);
end

function S = second_order(A, ABj, ABk, BAj, B)
    % Second order estimator f ollowing Saltelli 2002
    y = [A, B];
    if range(y) == 0
        warning('Constant values encountered, indicating model evaluations (or subset of evaluations) produced identical values.');
        S = 0;
        return;
    end
    Vjk = mean(BAj .* ABk - A .* B) / var(y);
    Sj = first_order(A, ABj, B);
    Sk = first_order(A, ABk, B);
    S = Vjk - Sj - Sk;
end

三、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,私信回复“111期”以及相应指令,即可获取对应下载方式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

随风飘摇的土木狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值