【亲测】ConvNext自定义数据集图像分类

ConvNext通过模仿Transformer的架构,将CNN在图像层面的表现高于同期的Transformer state-of-art。这里记录下使用ConvNext进行图像分类的配置过程。

平台环境

实验环境及配置:
Pytorch: 1.12.1
CUDA: 11.6 版本(使用 nvcc --version 查看)
GPU:显存8G
操作系统: ubuntu20.04
1 下载ConvNext源码

源码链接

https://github.com/facebookresearch/ConvNeXt

在这里插入图片描述

2 环境配置过程,其实可以参看官方文档中的 install.md 的内容,但这里我记录下自己的环境配置过程
2.1 使用Conda构建convnext的虚拟环境
 conda create -n convnext python=3.8 -y
2.2 进入虚拟环境
conda activate convnext
2.3 配置PyTorch环境(可以参看该博客)
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 
2.4 将源码解压后,安装下面的辅助包,注意官方推荐的是 tim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值