EDGE out of memory

若是有手动设置虚拟内存,建议更改为“由系统自动管理所有驱动器的分页文件大小”。

然后打开Edge,进入
edge://settings/resetProfileSettings
点击“重置,

然后关闭Edge,
鼠标右击开始菜单,打开任务管理器,结束所有Edge的进程。

然后鼠标右击开始菜单,打开“运行”,粘贴:
%LocalAppData%\Microsoft
点击“确定”,将打开一个文件夹,删除里面的
Edge
文件夹。 (这可能删除安装的站点应用。若是登录了Microsoft账号,密码、收藏夹等保存在Microsoft账号内,可以同步回来。若是有重要数据,建议先导出备份,防止意外。)

然后重启电脑。
再次打开Edge,暂时不要安装任何扩展,看下是否恢复正常。
(登录Microsoft账号时可能会有同步提示,请勿勾选“扩展”等,只勾选“保存的密码”和“收藏夹”。)

“class GATNet(nn.Module): def __init__(self, node_num=83, time_steps=14): super().__init__() self.node_num = node_num self.time_steps = time_steps # 修正后的GATv2配置 self.gat = GATv2Conv( in_channels=1, out_channels=32, heads=3, add_self_loops=True, ) # 时间特征提取 self.temporal = nn.GRU( input_size=32 * 3, hidden_size=64, num_layers=1, batch_first=True ) # 特征融合 self.fusion = nn.Sequential( nn.Linear(64 + 32 * 3, 128), nn.LayerNorm(128), nn.ReLU() ) # 输出层 self.output = nn.Sequential( nn.Linear(128, 64), nn.Dropout(0.2), nn.Linear(64, 1) ) def forward(self, x, adj_matrix): """ 输入: x: [batch_size, time_steps, node_num] (64,14,83) adj_matrix: [node_num, node_num] (83,83) """ device = next(self.parameters()).device batch_size = x.size(0) # 邻接矩阵预处理 adj = adj_matrix.to(device) edge_index, edge_attr = dense_to_sparse(adj) edge_attr = edge_attr.unsqueeze(-1).to(device) # 空间特征提取 spatial_features = [] for t in range(self.time_steps): x_t = x[:, t].unsqueeze(-1).to(device) # [64,83,1] x_flat = x_t.reshape(-1, 1) gat_out = self.gat(x_flat, edge_index, edge_attr) spatial_features.append(gat_out.view(batch_size, self.node_num, -1)) # 时间特征提取 temporal_input = torch.stack(spatial_features, dim=1) # [64,14,83,96] temporal_out, _ = self.temporal(temporal_input.view(batch_size * self.node_num, self.time_steps, -1)) # 特征融合 last_spatial = spatial_features[-1] last_temporal = temporal_out[:, -1].view(batch_size, self.node_num, -1) fused = torch.cat([last_spatial, last_temporal], dim=-1) fused = self.fusion(fused) output = self.output(fused).squeeze(-1) return output.unsqueeze(1)”这段代码报错:“gat_out = self.gat(x_flat, edge_index, edge_attr) File "E:\deeplearning\project\BiLSTM-CRF-NER-main\venv\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "E:\deeplearning\project\BiLSTM-CRF-NER-main\venv\lib\site-packages\torch_geometric\nn\conv\gatv2_conv.py", line 149, in forward edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes) File "E:\deeplearning\project\BiLSTM-CRF-NER-main\venv\lib\site-packages\torch_geometric\utils\loop.py", line 84, in add_self_loops loop_index = torch.arange(0, N, dtype=torch.long, device=edge_index.device) TypeError: arange() received an invalid combination of arguments - got (int, Tensor, device=torch.device, dtype=torch.dtype), but expected one of: * (Number end, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) *”请帮我修改一下
最新发布
04-04
<think>好的,我现在需要帮助用户解决他们提供的GATNet代码中的错误。用户遇到了在调用GATv2Conv时的类型错误,错误信息指出在add_self_loops时arange函数参数无效。首先,我需要仔细分析错误信息和代码结构。 首先,错误发生在调用GATv2Conv的forward方法时,具体是在添加自环边(add_self_loops)的过程中。错误提示显示torch.arange的参数组合无效。查看错误信息中的参数,发现用户传递了一个int和一个Tensor,而正确的参数应该是end作为Number。这让我想到,可能是在调用add_self_loops时,num_nodes参数的类型不正确,导致arange函数接收了错误的参数类型。 接下来,我需要检查用户代码中与edge_index生成相关的部分。用户使用了dense_to_sparse函数将邻接矩阵转换为edge_index和edge_attr。根据PyTorch Geometric的文档,dense_to_sparse返回的edge_index是形状为[2, num_edges]的长张量,而edge_attr则是边的属性。用户可能在这里得到了正确的edge_index,但问题可能出在num_nodes的推断上。 在GATv2Conv的forward方法中,当add_self_loops被调用时,num_nodes参数可能没有正确传递。默认情况下,add_self_loops会根据edge_index中的最大值加1来推断节点数,但有时候这不可靠,尤其是当节点索引不连续或存在缺失时。因此,手动指定num_nodes可能是必要的。 在用户的代码中,edge_index是从adj_matrix转换而来,而adj_matrix的形状是[node_num, node_num]。因此,正确的num_nodes应该是node_num,即83。但问题可能在于,当调用add_self_loops时,没有显式传递num_nodes参数,导致PyTorch Geometric尝试自动推断,但可能推断错误,导致类型不匹配。 查看GATv2Conv的初始化参数,用户设置了add_self_loops=True,这会在每次前向传播时自动添加自环边。但可能在这种情况下,自动推断的num_nodes不正确,因为edge_index可能没有包含所有节点的索引,或者adj_matrix中存在某些节点没有边,导致最大值小于实际节点数。因此,需要显式传递num_nodes参数到GATv2Conv中,或者在调用时手动指定。 检查用户初始化GATv2Conv的代码,发现没有传递num_nodes参数。根据GATv2Conv的文档,该参数是可选的,但如果在初始化时未指定,则在forward时需要传递。或者,在初始化时指定num_nodes,这样在添加自环边时会使用该值。 因此,可能的解决方案是在初始化GATv2Conv时添加num_nodes参数,设置为node_num(83)。或者,在调用GATv2Conv的forward时传递num_nodes参数。但根据用户当前的代码结构,GATv2Conv是在初始化时配置的,可能在forward时无法动态传递参数。因此,正确的做法是在初始化GATv2Conv时指定num_nodes=node_num,以确保add_self_loops正确计算节点数。 此外,用户可能在转换adj_matrix为edge_index时,没有正确生成所有节点的边,导致edge_index中的节点索引不完整,使得自动推断的num_nodes小于实际值。例如,如果某些节点在adj_matrix中没有边,那么dense_to_sparse生成的edge_index可能不包含这些节点的索引,导致num_nodes推断错误。因此,显式指定num_nodes可以避免这个问题。 另一个可能的错误来源是edge_attr的处理。用户将edge_attr.unsqueeze(-1)来扩展维度,可能是否正确?需要确认GATv2Conv是否接受edge_attr作为参数。根据文档,GATv2Conv的edge_dim参数如果设置,才会使用edge_attr。但用户可能在初始化时没有设置edge_dim,导致传递edge_attr时出现错误。不过,用户的错误信息中没有提到edge_attr的问题,所以这可能不是当前的问题所在,但需要检查。 综上,主要的错误是由于在添加自环边时num_nodes推断错误,导致torch.arange的参数错误。解决办法是在GATv2Conv初始化时显式设置num_nodes=self.node_num,或者在forward调用时传递num_nodes参数。但由于GATv2Conv的初始化参数中包含add_self_loops=True,可能需要在初始化时指定num_nodes,以确保正确添加自环边。 因此,修改代码中的GATv2Conv初始化部分,添加num_nodes=node_num,即: self.gat = GATv2Conv( in_channels=1, out_channels=32, heads=3, add_self_loops=True, num_nodes=node_num ) 但需要确认GATv2Conv是否接受num_nodes参数。查阅PyTorch Geometric的GATv2Conv文档,发现GATv2Conv本身没有num_nodes参数,add_self_loops的参数是在调用时传递的。因此,错误可能出现在forward时未正确传递num_nodes到add_self_loops中。然而,GATv2Conv的forward方法是否会传递num_nodes给add_self_loops呢? 查看GATv2Conv的forward方法的源码,发现当add_self_loops为True时,在调用add_self_loops函数时会使用num_nodes参数,该参数默认为None,此时会从edge_index中推断。如果用户提供的edge_index在转换后没有包含所有节点,那么推断的num_nodes可能不正确,导致arange的参数错误。 因此,正确的解决方法是确保在调用GATv2Conv的forward时,num_nodes正确传递。然而,用户无法直接控制GATv2Conv内部调用的add_self_loops的参数,因此需要在初始化GATv2Conv时设置正确的num_nodes,或者确保edge_index包含所有节点。 但如何确保edge_index包含所有节点?这可能不现实,尤其是当adj_matrix中存在全零的行或列时,这些节点不会被dense_to_sparse转换为边。因此,更好的方法是在生成edge_index时,手动添加自环边,或者在GATv2Conv中显式指定num_nodes。 然而,GATv2Conv的文档中提到,当add_self_loops=True时,可以通过在初始化时传递num_nodes来指定节点数量,以确保正确添加自环边。这可能是在初始化时就需要指定的参数,但根据GATv2Conv的源码,该参数是否存在于初始化参数中? 查看GATv2Conv的__init__方法参数,发现确实有一个num_nodes参数,但已经被弃用。建议使用None,并在forward时推断。这可能意味着用户需要手动处理。 可能的另一种方法是,在调用GATv2Conv的forward时传递num_nodes参数。但根据PyTorch Geometric的文档,GATv2Conv的forward方法的参数是x, edge_index, edge_attr等,并不包括num_nodes。因此,这可能不可行。 那么问题可能出在dense_to_sparse生成的edge_index是否正确,导致add_self_loops时推断的num_nodes错误。例如,如果adj_matrix中存在自环边或其他结构,导致edge_index中的节点索引最大值小于node_num-1,那么num_nodes会被错误地推断为较小的值,从而导致arange的参数类型错误。 例如,如果adj_matrix的节点数是83,但最大的节点索引在edge_index中是82(从0开始),则推断的num_nodes是83,这是正确的。但如果edge_index中的最大索引是小于82的,那么推断的num_nodes会小于83,导致在添加自环边时出现问题。 因此,用户需要确保在转换adj_matrix为edge_index时,所有节点都被正确表示。例如,即使某些节点没有边,是否应该在edge_index中显式包含它们的索引?或者,是否应该在调用add_self_loops时显式传递num_nodes参数? 在这种情况下,用户可能需要手动传递num_nodes到add_self_loops中,但由于用户无法直接修改GATv2Conv内部的调用,因此需要在初始化GATv2Conv时设置num_nodes,或者在生成edge_index时确保包含所有节点。 可能的解决方案是:在调用add_self_loops时,显式指定num_nodes=self.node_num。但如何做到这一点? 用户可能需要在生成edge_index之后,手动添加自环边,然后将add_self_loops设置为False,以避免GATv2Conv内部再次添加自环边。或者,调整edge_index以确保num_nodes正确推断。 或者,用户可能在转换adj_matrix时,确保生成的edge_index包含所有节点的自环边,这样在添加自环边时,num_nodes会被正确推断。但这样可能会导致重复的自环边,可能不是理想的解决办法。 另一种可能的解决方案是,在调用dense_to_sparse之前,确保adj_matrix包含自环边,这样生成的edge_index已经包含所有节点的自环边,这样在GATv2Conv内部再次添加自环边时,可能不会出现问题,但会导致重复的自环边。但根据错误信息,问题出现在添加自环边时的arange参数,所以这可能不是直接原因。 回到错误信息本身,错误是在执行torch.arange(0, N, ...)时,N可能是一个Tensor而不是整数。这说明在add_self_loops函数中,num_nodes参数可能被错误地传递为一个张量而不是整数。这可能是因为在GATv2Conv内部计算num_nodes时,错误地使用了某个张量的形状,而不是标量值。 例如,当edge_index为空或某些情况下,num_nodes可能被推断为一个张量而不是标量整数,导致torch.arange的参数错误。 因此,可能的解决方法是,在调用GATv2Conv的forward之前,确保num_nodes是一个整数。这可以通过在初始化GATv2Conv时传递num_nodes参数,或者在生成edge_index时确保正确。 但根据GATv2Conv的文档,num_nodes参数在初始化时可能已经被弃用,所以需要其他方法。 或者,用户在生成edge_index时,手动指定num_nodes。例如,在调用dense_to_sparse时,是否有一个参数可以指定节点数?查看PyTorch Geometric的dense_to_sparse函数的文档,发现该函数返回的edge_index是基于非零元素的坐标,因此无法直接指定num_nodes。因此,生成的edge_index可能不包含所有节点,导致num_nodes推断错误。 因此,正确的做法是,在添加自环边时显式传递num_nodes参数。但由于用户无法修改GATv2Conv内部的代码,这可能需要调整用户自己的代码。 可能的解决方案是:在调用GATv2Conv之前,手动添加自环边,并将add_self_loops设置为False。例如: 在初始化GATv2Conv时,设置add_self_loops=False,然后在forward时手动添加自环边,并传递num_nodes=self.node_num。 修改后的代码可能如下: 在__init__中: self.gat = GATv2Conv( in_channels=1, out_channels=32, heads=3, add_self_loops=False, # 关闭自动添加自环边 ) 在forward中: edge_index, edge_attr = dense_to_sparse(adj) edge_index, edge_attr = add_self_loops( edge_index, edge_attr=edge_attr, num_nodes=self.node_num ) edge_attr = edge_attr.unsqueeze(-1).to(device) 然后,将处理后的edge_index和edge_attr传递给self.gat。 这样,手动添加自环边并指定num_nodes,避免自动推断错误。 这可能解决arange参数错误的问题,因为手动指定了num_nodes,确保N是一个整数。 此外,用户代码中在处理edge_attr时,可能存在问题。例如,dense_to_sparse返回的edge_attr的形状是否正确?是否需要调整? 例如,dense_to_sparse返回的edge_attr的形状是[num_edges],然后用户使用unsqueeze(-1)将其变为[num_edges, 1]。这可能适用于某些情况,但需要确认GATv2Conv是否期望edge_attr的形状为[num_edges, edge_dim]。如果GATv2Conv的edge_dim参数设置为1,这可能正确。否则可能需要调整。 但用户当前的错误与edge_attr无关,所以这可能不是当前的问题。 综上,主要的解决步骤是: 1. 在生成edge_index后,手动添加自环边,并指定num_nodes=self.node_num。 2. 在GATv2Conv初始化时设置add_self_loops=False,以避免重复添加自环边。 3. 将处理后的edge_index和edge_attr传递给GATv2Conv。 因此,修改后的forward函数中邻接矩阵预处理部分: edge_index, edge_attr = dense_to_sparse(adj) edge_index, edge_attr = add_self_loops( edge_index, edge_attr=edge_attr, num_nodes=self.node_num ) edge_attr = edge_attr.unsqueeze(-1).to(device) 并且,在初始化GATv2Conv时设置add_self_loops=False。 这样,手动添加自环边并指定num_nodes,确保arange的参数正确。 另一个可能的错误来源是,用户在使用dense_to_sparse时得到的edge_index可能不包含正确的节点索引。例如,如果adj_matrix是一个稠密矩阵,但节点索引从1开始而不是0,这会导致问题。但通常adj_matrix的索引应该是从0开始的。 此外,检查用户的数据输入是否正确,adj_matrix的形状是否为[node_num, node_num],即83x83,这可能没问题。 总结,错误的原因是在添加自环边时,num_nodes未能正确推断,导致torch.arange的参数类型错误。解决方法是手动添加自环边并显式指定num_nodes,同时关闭GATv2Conv的自动添加自环边功能。</think>以下是代码错误的分析与修改方案: $\boxed{\text{错误原因分析}}$ 1. $\texttt{edge_index}$节点数量推断失败:当使用$\texttt{dense_to_sparse()}$转换邻接矩阵时,若图中存在孤立节点,生成的$\texttt{edge_index}$无法正确反映实际节点数量 2. 自环添加参数类型不匹配:$\texttt{GATv2Conv}$内部自动添加自环时,$\texttt{num_nodes}$参数未正确传递,导致$\texttt{torch.arange()}$接收了张量而非整数 $\boxed{\text{修改方案}}$ ```python class GATNet(nn.Module): def __init__(self, node_num=83, time_steps=14): super().__init__() self.node_num = node_num self.time_steps = time_steps # 修改1:关闭GATv2Conv自动添加自环 self.gat = GATv2Conv( in_channels=1, out_channels=32, heads=3, add_self_loops=False, # 关键修改点 ) # ... (其他层保持不变) def forward(self, x, adj_matrix): device = next(self.parameters()).device batch_size = x.size(0) # 邻接矩阵预处理 adj = adj_matrix.to(device) edge_index, edge_attr = dense_to_sparse(adj) # 修改2:手动添加自环并明确节点数 edge_index, edge_attr = add_self_loops( edge_index, edge_attr=edge_attr, num_nodes=self.node_num # 显式指定节点数量 ) edge_attr = edge_attr.unsqueeze(-1).to(device) # ... (后续代码保持不变) ``` $\boxed{\text{修改说明}}$ 1. **关闭自动添加自环**:将$\texttt{GATv2Conv}$的$\texttt{add_self_loops}$参数设为$\texttt{False}$,接管自环添加流程 2. **显式指定节点数量**:在$\texttt{add_self_loops()}$中直接传入$\texttt{num_nodes=self.node_num}$,确保张量创建时使用整型参数 3. **提前添加自环**:在特征提取循环前完成自环添加,保证所有节点都有明确的索引表示 $\boxed{\text{补充验证建议}}$ 1. 检查$\texttt{edge_index}$维度:确保转换后的$\texttt{edge_index.shape == [2, num_edges]}$ 2. 验证自环数量:通过$\texttt{(edge_index[0] == edge_index[1]).sum()}$应等于$\texttt{node_num}$ 3. 监控设备一致性:使用$\texttt{print(device)}$确认所有张量位于相同设备 示例验证代码片段: ```python # 在forward函数中添加验证 print(f"Edge index device: {edge_index.device}") print(f"Node num verification: {len(torch.unique(edge_index))} vs {self.node_num}") assert edge_index.shape[0] == 2, "Edge index格式错误" ``` 该修改方案通过显式控制图结构的生成过程,确保张量创建参数类型正确,同时保持原有模型的空间-时间特征提取架构不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值