之前也说过几个关于小目标检测的
小目标检测是计算机视觉领域中的一个极具挑战性的问题。随着深度学习和计算机视觉领域的不断发展,越来越多的应用场景需要对小目标进行准确的检测和识别。本文将从小目标的定义、意义和挑战等方面入手,全面介绍小目标检测的各种解决方案。
定义
小目标检测广义是指在图像中检测和识别尺寸较小、面积较小的目标物体。通常来说,小目标的定义取决于具体的应用场景,但一般可以认为小目标是指尺寸小于 像素的物体,如下图 COCO 数据集的定义。当然,对于不同的任务和应用,小目标的尺寸和面积要求可能会有所不同。
在 COCO 数据集中,针对三种不同大小(small,medium,large)的图片提出了测量标准,其包含大约 41% 的小目标(area<32×32), 34% 的中等目标(32×32<area<96×96), 和 24% 的大目标(area>96×96)。其中,小目标的 AP 是很难提升的!
意义
小目标检测的意义在于它可以提高技术的应用范围,同时可以帮助大家更好地理解图像中的细节信息。此外,小目标检测其实在我们日常生活中的许多领域均有广泛的应用,例如交通监控、医学影像分析、无人机航拍等。举个例子:
-
在交通监控