VideoFlow

本篇文章介绍来自香港中文大学 MMLab 的论文VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation

  • 论文链接:https://arxiv.org/abs/2303.08340

  • 代码链接:https://github.com/XiaoyuShi97/VideoFlow

本文提出了一个 多帧光流估计模型VideoFlow ,打破了当前主流方法只以两帧图片作为输入而面临的信息瓶颈,充分挖掘和利用多帧数据的线索,显著提升了光流估计的性能。在自动驾驶KITTI-2015 Benchmark上,VideoFlow实现了 3.65% 的Fl-all error,相比之前发表的最好结果(4.52%)误差降低了 19.2% 。在公开的Sintel Bechmark上,VideoFlow在Clean和Final两个子集分别取得了0.991与1.649 AEPE,与之前发表的最好结果(1.073和1.943)相比,误差下降了 7.6% 和 15.1% ,并且是 首个 在Clean子集实现 亚像素级别误差 的模型。模型与训练代码均已开源。

方法

本文主要由两部分组成。首先,考虑以相邻三帧图片作为输入时,提出了TRi-frame Optical Flow (TROF)模块,重点在同时预测从中间帧到前后两帧的光流,因为这两个方向的光流从相同的像素出发,避免之前方法由于单向warp光流无法对齐而产生的误差。当输入帧数大于三帧时,复用三帧模块TROF,额外引入一个运动传递(Motion Propagation)模块(MOP),通过在相邻的三帧模块之间传递运动信息,扩大了时序维度的感受野,提高光流估计的准确性。

三帧模型具体而言,三帧相邻的图片作为输入时时,采用共享权重的特征编码器获得对应特征图,然后分别建立中间帧与前后两帧的cost volume。采用类似RAFT的结构,迭代优化光流估计。核心的改进在于,在每一步迭代时,将输入变为双方向的cost feature和当前估计的双向光流值。采用最简单的concat操作融合双向的相似性和光流估计信息。TROF模型能利用额外的一帧提高光流估计的准确性。

多帧模型具体来说,每个三帧单元额外维护一个运动状态向量M_t,在每一步迭代更新之前,前后两个三帧单元的运动状态向量(m_fwd和m_bwd)会根据光流warp到中间的三帧单元,实现相邻单元的信息传递。每个一步结束后,运动状态向量都会更新。由于采用迭代更新的方式,随着迭代步数的增加,时序维度的感受野会不断变大,每个三帧单元能获得更多的信息,因而能更加准确地估计光流。

结果

实验结果在Sintel和KITTI-2015两个数据集上评测VideoFlow。其中Sintel有Clean和Final两个子集,它们内容相同的,但是Final子集中的图象存在运动模糊,因而更加困难。的三帧模型已经超越了之前所以发表的方法。五帧模型进一步提高了准确度。值得注意的是,VideoFlow是首个在Sintel Clean子集实现亚像素级别误差的方法。  whaosoft aiot http://143ai.com  

具体而言,在Sintel Bechmark上,VideoFlow在Clean和Final两个子集分别取得了0.991与1.649 AEPE,与之前发表的最好结果(1.073和1.943)相比,误差下降了7.6%和15.1%。在自动驾驶KITTI-2015 Benchmark上,VideoFlow实现了3.65%的Fl-all error,相比之前发表的最好结果(4.52%)误差降低了19.2%。

可视化分析展示了KITTI-2015 Benchmark上的两个典型例子,其中白色表示预测结果为静止,不同颜色代表不同预测方向。

在第一行中,蓝框中的一束白光是典型的镜头炫光现象,FlowFormer++错误的将其识别成了运动的前景物体,而VideoFlow没有受到干扰,正确预测背景房屋的光流。

第二行蓝框中,指示牌反面与路过车辆颜色同为接近的灰色,因此FlowFormer++将指示牌误认为车辆一部分(预测光流接近)。

VideoFlow得益于多帧信息,成功区分出指示牌为静止前景(蓝框内白色圆形区域),与移动的背景车辆运动不同。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值