
python机器学习
wamg潇潇
此人很懒,真的什么都没有写(。・ω・。)!!
展开
-
深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU
【 tensorflow中文文档:tensorflow 的激活函数有哪些】激活函数可以分为两大类 :饱和激活函数:sigmoid、 tanh 非饱和激活函数:ReLU 、Leaky Relu 、ELU【指数线性单元】、PReLU【参数化的ReLU 】、RReLU【随机ReLU】相对于饱和激活函数,使用“非饱和激活函数”的优势在于两点: 1.首先,“非饱和激活...原创 2019-05-06 17:56:43 · 21743 阅读 · 3 评论 -
Python机器学习库SKLearn:数据预处理
数据预处理: 将输入的数据转化成机器学习算法可以使用的数据。包含特征提取和标准化。 原因:数据集的标准化(服从均值为0方差为1的标准正态分布(高斯分布))是大多数机器学习算法的常见要求。如果原始数据不服从高斯分布,在预测时表现可能不好。实践中经常进行标准化(z-score 特征减去均值/标准差)。目录 1.1 标准正态分布(均值...转载 2019-05-06 20:17:57 · 5207 阅读 · 0 评论 -
模糊数学模型(一): 隶属函数、模糊集合的表示方法、模糊关系、模糊矩阵
模糊数学模型系列博文:【1】基本概念: 隶属函数、模糊集合的表示方法、模糊关系、模糊矩阵【2】模糊模式识别:海明贴近度 、欧几里得贴近度 、黎曼贴近度、 格贴近度、最大隶属原则、择近原则【3】模糊聚类分析方法:模糊等价矩阵、模糊相似矩阵、传递闭包法、布尔矩阵法 【4】模糊决策分析方法目录1.1 模糊数学简介1.2.1 模糊集和隶属函数1.2.2 模糊集合的表示方法...原创 2019-05-06 22:35:21 · 103012 阅读 · 13 评论 -
如何实现numpy的ndarray与pandas的series和dataframe之间的相互转换
对数组进行切片OR选择部分索引时如果报错为:TypeError: unhashable type: 'slice'需要使用 .iloc[ ] ,它通过位置position来索引 ,而.loc[ ] 通过标签label 来索引。遇到下面这种报 错时,需要把dataframe 格式转为numpy数组格式,那么怎么转化呢AttributeError: 'DataFrame' ...转载 2019-05-07 16:38:50 · 8778 阅读 · 0 评论 -
Keras画acc和loss曲线图
#加载keras模块from __future__ import print_functionimport numpy as npnp.random.seed(1337) # for reproducibility import kerasfrom keras.datasets import mnistfrom keras.models import Sequentialfro...转载 2019-05-07 21:03:18 · 3471 阅读 · 0 评论 -
Keras实现GRU 与LSTM
目录LSTM 变种——GRU的原理GRU 与LSTM的对比Keras实现GRUkeras中使用gru/LSTM,如何选择获得最后一个隐状态还是所有时刻的隐状态LSTM的网络结构图:C是一个记忆单元, U和W是网络LSTM模型的参数(权值矩阵),i、f、o分别称之为输入门、遗忘门、输出门。σ表示sigmoid激活函数 ;s(t)是t时刻,LSTM隐藏层的激活值...原创 2019-05-07 21:46:20 · 14546 阅读 · 3 评论 -
Python的reshape的用法:reshape(1,-1)
目录numpy中reshape函数的三种常见相关用法reshape(1,-1)转化成1行:reshape(2,-1)转换成两行:reshape(-1,1)转换成1列:reshape(-1,2)转化成两列numpy中reshape函数的三种常见相关用法numpy.arange(n).reshape(a, b) 依次生成n个自然数,并且以a行b列的数组形式显示np...转载 2019-05-11 17:22:24 · 334289 阅读 · 21 评论 -
matplotlib的hist函数绘制直方图
官方文档:matplotlib的hist函数目录示例:绘制概率密度函数pdf 、累计分布函数cdfhist 语法& 参数注解绘制一维正态分布直方图的三种方式绘制二维正态分布直方图(histogram)能展示数值型数据的数据分布情况;也就是先对数据分组,再用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距。由于分组数据具有连续...原创 2019-05-11 22:34:11 · 7200 阅读 · 0 评论 -
Python之 %s %d %f
目录%s 字符串%d 整型%f 浮点型%s 字符串string="hello" #%s打印时结果是hello print "string=%s" % string # output: string=hello %2s 字符串长度为2,当原字符串的长度超过2时,按原长度打印#%2s 字符串长度为2,当原字符串的长度超过2时,按原长度...转载 2019-05-26 11:10:27 · 396 阅读 · 0 评论 -
numpy数组拼接:append()、extend()、concatenate()函数
目录extend()函数append()函数拼接一个数组和一个数值拼接两个数组concatenate()函数append()、extend()等拼接列表并将其转成数组,所以要先将数组转成列表。extend()函数 只适用于简单的一维数组,对于大量数据的拼接一般不建议使用。import numpy as npa=np.array([1,2,5])b=...原创 2019-05-13 10:35:53 · 167090 阅读 · 1 评论 -
可视化库seaborn:swarmplot、tsplot、PairGrid 、violinplot、barplot、boxplot、palplot、`Facetgrid、catplot、heatmap
seaborn 库是对matplotlib库的封装。1 布局&风格设置import seaborn as sns # 导入模块import numpy as npimport matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlinedef sinplot(flip=1): x = n...原创 2019-05-22 21:24:51 · 5904 阅读 · 2 评论 -
IPython魔术命令:%timeit 、%time、 %reset、%run *.py
魔术命令IPython有一些特殊的命令。能够方便轻松地控制IPython系统。魔术命令以百分号%为前缀;可看作运行于IPython系统中的命令行程序,它们大都还有一些参数选项。在命令后面加问号(?)可以查看。默认可以不带百分号使用的,只要没有定义与其同名的变量即可。可以通过%automagic命令打开或者关闭此功能。通过%quickref 或%magic命令可以查看所有的...转载 2019-06-18 23:01:26 · 8882 阅读 · 0 评论 -
Xgboost代码实现详解
目录XGBOOST原理回顾数据探索数据预处理构建简单的XGBoost 模型Xgboost参数XGBoost 参数调节Step 1: 学习率与树个数Step 2: 树的深度与节点权重Step 3: 调节 gamma去降低过拟合风险Step 4: 调节样本采样方式 subsample 和 colsample_bytreeStep 5: ...原创 2019-05-24 08:50:18 · 23432 阅读 · 4 评论 -
朴素贝叶斯、贝叶斯网络分类器
目录贝叶斯定理 贝叶斯分类朴素贝叶斯分类器 贝叶斯网络 VS 朴素贝叶斯贝叶斯网络 条件概率表集合贝...原创 2019-05-13 22:40:39 · 10158 阅读 · 0 评论 -
lasso回归、岭回归
目录L1惩罚 & L2惩罚Lasso估计岭回归 Ridge RegressionRidge 估计图示lasso和Ridge的差异 从统计学的语言描述,lasso( least absolute shrinkage and selection operator)最小化残差平方和并使系数的绝对值之和小于某个常数,即对损失函数添加一个L1罚函数使一些指标的...原创 2019-05-13 20:18:46 · 3192 阅读 · 0 评论 -
xgboost :提升树
目录1 监督学习的主要内容回顾1.1 监督学习基础1. 符号说明:2. 参数和目标函数3. 训练数据上的损失:4.正则化5.优化目标与偏差-方差Trade-off2 回归树与集成(What are we Learning)2.1 集成方法的优势2.2 xgboost的模型与参数2.3 xgboost的目标函数1.Tree En...原创 2019-04-01 13:34:46 · 1809 阅读 · 0 评论 -
Matplotlib可视化:绘图基本操作(一)
Matplotlib官网目录1. 先导入库 2.最基本的一个图3. 不同的线条类型linestyle &表示颜色color的字符参数:5. 对图的操作还可以用plt.setp(),可以先作图,再更改布局风格6. 子图.subplot()7. 给图上加上注释8. 风格设置matplotlib cheatsheet1. 先导入库im...原创 2019-04-11 21:56:22 · 3827 阅读 · 0 评论 -
Keras笔记(一):常用函数
Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数Callbacks 目录1. ModelCheckpoint :模型保...原创 2019-04-12 20:55:07 · 1505 阅读 · 0 评论 -
列表解析知识(以及元组知识)
语法:1. [expr for iter_var in iterable] 首先迭代iterable里所有内容,每一次迭代,都把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。2. [expr for iter_var in iterable if cond_expr] 加入了判断语句cond_e...转载 2019-04-12 12:37:02 · 268 阅读 · 0 评论 -
数据变换方法: 初值化、 均值化、百分比/倍数变换、归一化、极差最大值化、区间值化: MinMaxScaler、StandardScaler、MaxAbsScaler
目录数据变换的目的数据变换的七种常见方式初值化变换 均值化变换 百分比变换倍数变换 归一化变换 极差最大值化变换区间值化变换1. matlab ...原创 2019-04-20 17:46:23 · 24445 阅读 · 1 评论 -
pandas 中的axis:columns 与index
当使用sort() 函数,代码报错为【dataframe 'object' has no attribute sort】时,把sort()改为sort_values().这是因为sort_index() 按索引排序;sort_values()按 columns排序。是不是感觉很混乱?直到我在StackOverflow 上找到这个图:只要注意看axis=1或0的那个方向就能理解了,axi...原创 2019-04-13 14:25:13 · 2062 阅读 · 0 评论 -
Keras笔记(二):优化器optimizers
注: 本文转自优化器optimizers - Keras中文文档 Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数Ca...转载 2019-04-17 10:51:15 · 5718 阅读 · 0 评论 -
Keras笔记(三):目标函数objectives /loss
注:本文转自目标函数objectives - Keras中文文档 Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数Ca...转载 2019-04-17 10:59:22 · 1608 阅读 · 0 评论 -
Keras笔记(四):序贯(Sequential)模型
注:本文转自 Sequential model - Keras中文文档Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数C...转载 2019-04-17 17:07:21 · 687 阅读 · 0 评论 -
Keras笔记(五):Sequential模型接口
注:本文转自Sequential模型接口 - Keras中文文档 Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数Cal...转载 2019-04-17 17:10:15 · 539 阅读 · 0 评论 -
Keras笔记(六):回调函数Callbacks
注:本文转自回调函数Callbacks - Keras中文文档 Keras文档系列Keras笔记(一):常用函数Keras笔记(二):优化器optimizersKeras笔记(三):目标函数objectives /loss Keras笔记(四):序贯(Sequential)模型Keras笔记(五):Sequential模型接口 Keras笔记(六):回调函数Cal...转载 2019-04-17 17:11:44 · 2308 阅读 · 0 评论 -
Numpy中的shape、reshape函数
shape函数可以了解数组的结构;reshape()函数改变数组的结构。目录1 shape()函数2reshape()函数1 shape()函数读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数。它的输入参数可以是一个整数表示维度,也可以是一个矩阵。shape函数返回的是一个元组tuple,表示数组(矩阵)的维度/ 形状,例子如下:w...原创 2019-05-05 15:34:33 · 29213 阅读 · 0 评论 -
Keras官方中文文档:常见问题与解答
所属分类:Keras Keras FAQ:常见问题如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch"和"sample"都是啥意思? 如何保存Keras模型? 为什么训练误差(loss)比测试误差高很多? 如何获取中间层的输出? 如何利用Keras处理超过机器内存的数据集? 当验证集的loss不再下降时...转载 2019-05-08 11:31:29 · 436 阅读 · 0 评论 -
谱聚类-----spectral clustering
这篇论文介绍了谱聚类方法,即利用相似矩阵的光谱(特征值)来对数据降维。【论文链接】ON spectral clustering:analysis and an algorithm,Andrew Y.Ng .et al,总结下谱聚类算法的优点:1)谱聚类只需要数据之间的相似度矩阵,因此处理稀疏数据的聚类很有效;传统聚类算法比如K-Means很难做到z这点。 ...原创 2019-03-27 08:54:33 · 1366 阅读 · 0 评论