有瓶颈设备的多级生产计划问题

 

 问题实例 :在制造企业的中期或短期生产计划管理中,常常要考虑如下的生产计划优化问题: 在给定的外部需求和生产能力等限制条件下,按照一定的生产目标(通常是生产总费用 最小)编制未来若干个生产周期的最优生产计划,这种问题在文献上一般称为批量问题 (lotsizing problems)。所谓某一产品的生产批量(lotsize),就是每通过一次生产准备生 产该产品时的生产数量,它同时决定了库存水平。由于实际生产环境的复杂性,如需求 的动态性,生产费用的非线性,生产工艺过程和产品网络结构的复杂性,生产能力的限 制,以及车间层生产排序的复杂性等,批量问题是一个非常复杂、非常困难的问题。 我们通过下面的具体实例来说明这种多级生产计划问题的优化模型。这里“多级” 的意思是需要考虑产品是通过多个生产阶段(工艺过程)生产出来的。 

例 1  某工厂的主要任务是通过组装生产产品 A,用于满足外部市场需求。产品 A 的构成与组装过程见图 1,即 D , E,F,G 是从外部采购的零件,先将零件 D,E 组装成部件B ,零件 F,G 组装成部件C ,然后将部件 B,C 组装成产品 A出售。图中弧上的
数字表示的是组装时部件(或产品)中包含的零件(或部件)的数量(可以称为消耗系 数),例如DB弧上数字“9”表示组装 1 个部件B 需要用到 9 个零件D;BA弧上的 数字“5”表示组装 1 件产品 A需要用到 5 个部件B ;依此类推。 

假设该工厂每次生产计划的计划期为 6 周(即每次制定未来 6 周的生产计划),只 有最终产品 A有外部需求,目前收到的订单的需求件数按周的分布如表 1 第 2 行所示。 部件  B,C 是在该工厂最关键的设备(可以称为瓶颈设备)上组装出来的,瓶颈设备的生产能力非常紧张,具体可供能力如表1第3行所示(第2周设备检修,不能使用)。 B,C的能力消耗系数分别为 5 和 8,即生产 1 件B 需要占用 5 个单位的能力,生产 1 件C 需 要占用 8 个单位的能力。  

对于每种零部件或产品,如果工厂在某一周订购或者生产该零部件或产品,工厂 需要一个与订购或生产数量无关的固定成本(称为生产准备费用);如果某一周结束时该零部件或产品有库存存在,则工厂必须付出一定的库存费用(与库存数量成正比) 。 这些数据在表 1 第 5 、6 行给出。

按照工厂的信誉要求,目前接收的所有订单到期必须全部交货,不能有缺货;此外,不妨简单地假设目前该企业没有任何零部件或产品库存,也不希望第 6 周结束后留下任何零部件或产品库存。最后,假设不考虑生产提前期,即假设当周采购的零件马上 就可用于组装,组装出来的部件也可以马上用于当周组装成品 A。 在上述假设和所给数据下,如何制定未来 6 周的生产计划。

2  建立模型

(1)问题分析

这个实例考虑的是在有限的计划期内,给定产品结构、生产能力和相关费用及零 部件或成品(以下统称为生产项目)在离散的时间段上(这里是周,也可以是天、月等) 的外部需求之后,确定每一生产项目在每一时间段上的生产量(即批量),使总费用最 小。由于每一生产项目在每一时间段上生产时必须经过生产准备(setup),所以通常的 讨论中总费用至少应考虑生产准备费用和库存费用。其实,细心的读者一定会问:是否需要考虑生产的直接成本(如原材料成本、人力成本、电力成本等)?这是因为本例中 假设了不能有缺货发生,且计划初期和末期的库存都是 0,因此在这个 6 周的计划期内 A的总产量一定正好等于 A的总需求,所以可以认为相应的直接生产成本是一个常数, 因此就不予考虑了。只要理解了我们下面建立优化模型的过程和思想,对于放松这些假 定条件以后的情形,也是很容易类似地建立优化模型的。

(2)符号说明

为了建立这类问题的一般模型,我们定义如下数学符号: 

N :生产项目总数(本例中 N =7);

T :计划期长度(本例中 T =6) ;

K :瓶颈资源种类数(本例中 K =1 ); 

M :一个充分大的正数,在模型中起到使模型线性化的作用;

\small d_{i,t} :项目i在t时段的外部需求(本例中只有产品 A有外部需求);

\small X_{i,t} :项目i在t时段的生产批量; 

\small I_{i,t} :项目i在t时段的库存量; 

\small Y_{i,t} :项目i在t时段是否生产的标志(0:不生产,1:生产); 

\small S\left ( i \right ) :产品结构中项目i的直接后继项目集合; 

\small r_{i,\, j} :产品结构中项目 j 对项目i的消耗系数; 

\small s_{i,t} :项目i在t时段生产时的生产准备费用; 

\small h_{i,t}  :项目i在t时段的单件库存费用; 

\small C_{k,t} :资源k 在t时段的能力上限; 

\small a_{k,i,t} :项目i在t时段生产时,生产单个项目占用资源k 的能力; 

(3)目标函数

这个问题的目标是使生产准备费用和库存费用的总和最小。因此,目标函数应该 是每个项目在每个阶段上的生产准备费用和库存费用的总和,即 

                                 ( 1 )

(4)约束条件

这个问题中的约束有如下几类:每个项目的物流应该守恒、资源能力限制应该满足、每时段生产某项目前必须经过生产准备和非负约束(对 \small Y_{i,t} 是  0− 1约束)。 所谓物流守恒,是指对每个时段、每个项目(图中一个节点)而言,该项目在上一个时段的库存量加上当前时段的生产量,减去该项目当前时段用于满足外部需求的量 和用于组装其它项目(直接后继项目)的量,应当等于当前时段的库存量。具体可以写成如下表达式(假设 \small I_{i,0}=0): 

                       ( 2 )       

资源能力限制比较容易理解,即 

                      ( 3 )          

3  求解模型 

 

MODEL: 
TITLE 瓶颈设备的多级生产计划; 
SETS: 
! PART=项目集合,Setup=生产准备费,Hold=单件库存成本,   A=对瓶颈资源的消耗系数; 
PART/A B C D E F G/:Setup,Hold,A; 
! TIME=计划期集合,Capacity=瓶颈设备的能力; 
TIME/1..6/:Capacity; 
! USES=项目结构关系,Req=项目之间的消耗系数; 
USES(PART,PART):Req; 
! PXT=项目与时间的派生集合,Demand=外部需求,   X=产量(批量), Y=0/1变量,INV=库存; PXT(PART,TIME):Demand,X,Y,Inv; 
ENDSETS 
! 目标函数; 
[OBJ]Min=@sum(PXT(i,t):setup(i)*Y(i,t)+hold(i)*Inv(i,t)); 
! 物流平衡方程; 
@FOR(PXT(i,t)|t #NE# 
1:[Bal]Inv(i,t-1)+X(i,t)-Inv(i,t)=Demand(i,t)+@SUM(USES(i,j):Req( i,j)*X(j,t))); @FOR(PXT(i,t)|t #eq# 
1:[Ba0]X(i,t)-Inv(i,t)=Demand(i,t)+@SUM(USES(i,j):Req(i,j)*X(j,t) )); 
! 能力约束; 
@FOR(TIME(t):[Cap]@SUM(PART(i):A(i)*X(i,t))<Capacity(t));  
! 其他约束; 
M = 25000; 
@FOR(PXT(i,t):X(i,t)<=M*Y(i,t)); 
@FOR(PXT:@BIN(Y)); 
DATA: 
Demand=0;Req =0;  
Capacity=10000 0 5000 5000 1000 1000; 
Setup=400 500 1000 300 200 400 100; 
Hold=12 0.6 1.0 0.04 0.03 0.04 0.04; 
A=0 5 8 0 0 0 0; 
ENDDATA 
CALC: 
demand(1,1)=40;demand(1,3)=100; 
demand(1,5)=90;demand(1,6)=10; 
req(2,1)=5;req(3,1)=7;req(4,2)=9; 
req(5,2)=11;req(6,3)=13;req(7,3)=15; 
ENDCALC 
END

习题:

1.某农户拥有 100 亩土地和 25000 元可供投资,每年冬季(9 月中旬至来年 5 月 中旬),该家庭的成员可以贡献 3500h 的劳动时间,而夏季为 4000h。如果这些劳动时 间有富裕,该家庭中的年轻成员将去附近的农场打工,冬季每小时 6.8 元,夏季每小时 7.0 元。

现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。 农作物不需要付出投资,但每头奶牛需要 400 元的初始投资,每只母鸡需要 3 元的初始 投资。每头奶牛需要使用 1.5 亩土地,并且冬季需要付出 100h 劳动时间,夏季付出 50h 劳动时间,每年产生的净现金收入为 450 元;每只母鸡的对应数字为:不占用土地,冬 季 0.6h,夏季 0.3h,年净现金收入 3.5 元。养鸡厂房最多只能容纳 3000 只母鸡,栅栏 的大小限制了最多能饲养 32 头奶牛。

根据估计,三种农作物每种植一亩所需要的劳动时间和收入如表 11 所示。建立数 学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。 

2.如图 4,有若干工厂的排污口流入某江,各口有污水处理站,处理站对面是居 民点。工厂 1 上游江水流量和污水浓度,国家标准规定的水的污染浓度,以及各个工厂 的污水流量和污水浓度均已知道。设污水处理费用与污水处理前后的浓度差和污水流量 成正比,使每单位流量的污水下降一个浓度单位需要的处理费用(称处理系数)为已知。 处理后的污水与江水混合,流到下一个排污口之前,自然状态下的江水也会使污水浓度降低一个比例系数(称自净系数),该系数可以估计。试确定各污水处理站出口的污水 浓度,使在符合国家标准规定的条件下总的处理费用最小。 

先建立一般情况下的数学模型,再求解以下的具体问题: 

(1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?

(2)如果只要求三个居民点上游的水污染达到国家标准,最少需要花费多少费 用? 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值