如何免费查找/下载S&P500指数的历史数据

   S&P500指数介绍

先进入雅虎财经 ,在往下拉的时候有这样一个APPLY:

在 【Time Period】选择你需要的数据的起止日期,

在【Show】选择历史数据,

【Frequency 】表示你选择的数据的粒度,有daily(每日),weekly(按周划分),monthly(月度)数据。

这三个选项选择好了之后,点击Apply,就能查找出数据来,下方的Download Data会将查找的数据保存为csv格式。

日期Date , 开盘Open,最高 High ,最低Low, 收盘Close* ,  调整收盘价Adj Close**  , 成交量Volume。

### 使用MatLab构建S&P500指数收盘价格预测模型 为了实现S&P500指数收盘价格的预测,在MatLab中可以采用时间序列分析方法之一——ARIMA (AutoRegressive Integrated Moving Average) 模型。此模型适用于处理具有趋势性和季节性的数据集[^1]。 #### 数据获取与预处理 首先,需要收集历史交易日内的S&P500指数收盘价作为训练样本。可以通过金融API接口下载这些数据到本地文件系统或直接读取已有的CSV格式的数据源。接着对原始数据执行清洗操作去除缺失值并转换成适合建模的时间序列对象: ```matlab % 加载数据 data = readtable('SPX.csv'); % 假设有一个名为'SPX.csv'的历史股价文件 dates = datetime(data.Date, 'InputFormat', 'yyyy-MM-dd'); closePrices = data.Close; % 创建时间序列变量 tsClosePrice = timeseries(closePrices, dates); ``` #### 构建ARIMA模型 基于上述准备好的时间序列`tsClosePrice`,接下来定义参数p,d,q分别代表自回归阶数、差分次数和平滑移动平均线长度来初始化一个ARIMA类实例化对象。这里假设已经通过ACF/PACF图谱或者其他方式确定了最佳配置(p=2,d=1,q=2)[^2]: ```matlab model = arima(2, 1, 2); % 定义ARIMA(2,1,2) % 对模型进行估计拟合 fitModel = estimate(model, tsClosePrice.Data); disp(fitModel); % 显示模型细节信息 ``` #### 预测未来走势 完成模型训练之后就可以利用它来进行短期的价格预测了。下面这段代码展示了如何对未来N天内可能发生的收盘价做出推测,并绘制出图形表示结果: ```matlab numStepsAhead = 30; % 设置想要向前看多少个交易日 [forecastedValues, forecastIntervals] = ... forecast(fitModel, numStepsAhead, ... 'Y0', tsClosePrice.Data(end-numStepsAhead:end)); figure; plot(dates(end-length(tsClosePrice)+1:end), closePrices(end-length(tsClosePrice)+1:end)); hold on; lastDate = dates(end); predictedDates = lastDate + caldays((1:numStepsAhead)'); errorbar(predictedDates, forecastedValues, ... forecastIntervals(:,2)-forecastedValues,... '-r.', 'MarkerSize', 8); title(['Forecast of S\&P500 Close Price Over Next ', num2str(numStepsAhead),' Days']); xlabel('Trading Day'); ylabel('Closing Value ($USD)'); legend({'Historical Data','Predictions'}); grid minor; datetick('x','mmm yyyy'); ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值