偏微分方程的数值解(一):定解问题 & 差分解法


偏微分方程的数值解系列博文:

偏微分方程的数值解(一):定解问题 & 差分解法

偏微分方程的数值解(二): 一维状态空间的偏微分方程的 MATLAB 解法

偏微分方程的数值解(三): 化工应用实例 ----------触煤反应装置内温度及转换率的分布

偏微分方程的数值解(四): 化工应用————扩散系统之浓度分布

偏微分方程的数值解(五): 二维状态空间的偏微分方程的 MATLAB 解法

偏微分方程的数值解(六): 偏微分方程的 pdetool 解法


自然科学与工程技术中种种运动发展过程与平衡现象各自遵守一定的规律。这些规 律的定量表述一般地呈现为关于含有未知函数及其导数的方程。我们将只含有未知多元 函数及其偏导数的方程,称之为偏微分方程。 方程中出现的未知函数偏导数的最高阶数称为偏微分方程的阶。如果方程中对于未 知函数和它的所有偏导数都是线性的,这样的方程称为线性偏微分方程,否则称它为非 线性偏微分方程。 初始条件和边界条件称为定解条件未附加定解条件的偏微分方程称为泛定方程。 对于一个具体的问题,定解条件与泛定方程总是同时提出。定解条件与泛定方程作为一 个整体,称为定解问题。

§1 偏微分方程的定解问题

§2 偏微分方程的差分解法

2.1 椭圆型方程第一边值问题的差分解法

(i) 直接转移                               (ii) 线性插值

五点菱形格式                           五点矩形格式

2.2 抛物型方程的差分解法

2.2.1 微分方程的差分近似                  2.2.2 初值、边值条件的处理

2.2.3 几种常用的差分格式                       

(i) 古典显式格式                  (ii)古典隐式格式                     

(iii)杜福特—弗兰克尔(DoFort—Frankel)格式

2.3 双曲型方程的差分解法              一阶双曲型方 程的差分解法


各种物理性质的定常(即不随时间变化)过程,都可用椭圆型方程来描述。其最典 型、最简单的形式是泊松(Poisson)方程

带有稳定热源或内部无热源的稳定温度场的温度分布,不可压缩流体的稳定无旋流动及 静电场的电势等均满足这类方程。

Poisson 方程的第一边值问题

第二类和第三类边界条件可统一表示成

其中 n 为边界Γ 的外法线方向。当α = 0 时为第二类边界条件,α ≠ 0时为第三类边界 条件。

在研究热传导过程,气体扩散现象及电磁场的传播等随时间变化的非定常物理问 题时,常常会遇到抛物型方程。其最简单的形式为一维热传导方程

方程(5)可以有两种不同类型的定解问题: 初值问题(也称为 Cauchy 问题)

双曲型方程的最简单形式为一阶双曲型方程

物理中常见的一维振动与波动问题可用二阶波动方程

描述,它是双曲型方程的典型形式。方程(10)的初值问题为

边界条件一般也有三类,最简单的初边值问题为

如果偏微分方程定解问题的解存在,唯一且连续依赖于定解数据(即出现在方程 和定解条件中的已知函数),则此定解问题是适定的。可以证明,上面所举各种定解问 题都是适定的。

 

§2 偏微分方程的差分解法

差分方法又称为有限差分方法或网格法,是求偏微分方程定解问题的数值解中应用 最广泛的方法之一。它的基本思想是:先对求解区域作网格剖分,将自变量的连续变化 区域用有限离散点(网格点)集代替;将问题中出现的连续变量的函数用定义在网格点 上离散变量的函数代替;通过用网格点上函数的差商代替导数,将含连续变量的偏微分 方程定解问题化成只含有限个未知数的代数方程组(称为差分格式)。如果差分格式有 解,且当网格无限变小时其解收敛于原微分方程定解问题的解,则差分格式的解就作为 原问题的近似解(数值解)

因此,用差分方法求偏微分方程定解问题一般需要解决以 下问题:

(i)选取网格;

(ii)对微分方程及定解条件选择差分近似,列出差分格式;

(iii)求解差分格式;

(iv)讨论差分格式解对于微分方程解的收敛性及误差估计。

下面我们只对偏微分方程的差分解法作一简要的介绍。

2.1 椭圆型方程第一边值问题的差分解法

以 Poisson 方程(1)为基本模型讨论第一边值问题的差分方法。 考虑 Poisson 方程的第一边值问题(3)

边界条件的处理可以有各种方案,下面介绍较简单的两种。

(i) 直接转移

(ii) 线性插值

五点菱形格式

由式(13)所给出的差分格式称为五点菱形格式,实际计算时经常取 h = τ ,此时 五点菱形格式可化为

求解差分方程组最常用的方法是同步迭代法,同步迭代法是最简单的迭代方式。除 边界节点外,区域内节点的初始值是任意取定的。

例 1 用五点菱形格式求解 Laplace 方程第一边值问题

五点矩形格式

2.2 抛物型方程的差分解法

以一维热传导方程(5)

为基本模型讨论适用于抛物型方程定解问题的几种差分格式。

2.2.1 微分方程的差分近似

2.2.2 初值、边值条件的处理

为用差分方程求解定解问题(6),(7)等,还需对定解条件进行离散化。 对初始条件及第一类边界条件,可直接得到

2.2.3 几种常用的差分格式

下面我们以热传导方程的初边值问题(7)为例给出几种常用的差分格式。

(i) 古典显式格式

(ii)古典隐式格式

将(19)整理并与式(21),(22)联立,得差分格式如下

(iii)杜福特—弗兰克尔(DoFort—Frankel)格式

DoFort—Frankel 格式是三层显式格式,它是由式(24)与(25),(26)结合得到 的。具体形式如下:

2.3 双曲型方程的差分解法

对二阶波动方程(10)

方程组(30)由两个独立的一阶双曲型方程联立而成。因此下面主要讨论一阶双曲型方 程的差分解法。

一阶双曲型方 程的差分解法


偏微分方程的数值解系列博文:

偏微分方程的数值解(一):定解问题 & 差分解法

偏微分方程的数值解(二): 一维状态空间的偏微分方程的 MATLAB 解法

偏微分方程的数值解(三): 化工应用实例 ----------触煤反应装置内温度及转换率的分布

偏微分方程的数值解(四): 化工应用————扩散系统之浓度分布

偏微分方程的数值解(五): 二维状态空间的偏微分方程的 MATLAB 解法

偏微分方程的数值解(六): 偏微分方程的 pdetool 解法


 

  • 91
    点赞
  • 537
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
### 回答1: 基于matlab的偏微分方程差分解法是一种数值计算方法,用于求偏微分方程数值。这种方法将偏微分方程离散化为差分方程,并利用matlab的矩阵运算和迭代计算功能进行求。以下是该方法的具体步骤: 1. 确定偏微分方程的边界条件和初始条件,并将其离散化为差分条件。通常将空间坐标离散化为网格点,时间坐标离散化为时间步长。 2. 将偏微分方程中的导数用差分近似代替。一般有三种常见的差分格式:前向差分、后向差分和中心差分。 3. 将差分方程通过数值迭代的方式求。使用matlab的循环结构,按照差分方程的离散形式,逐步计算每个网格点的数值。 4. 当达到指定的收敛条件时,迭代停止,并输出数值。一般的收敛条件有两种:根据数值的误差判断收敛或根据迭代次数判断。 5. 可以通过画图来展示数值的变化。使用matlab的绘图功能,将数值在空间上和时间上进行可视化。 需要注意的是,该方法的精度和稳定性受到离散步长的影响。较小的步长可以提高数值的精度,但同时也会增加计算量。因此,需要选择适当的步长来平衡计算效率和数值精度。 基于matlab的偏微分方程差分解法是一种非常常用的数值计算方法,可以应用于各种数学领域中的偏微分方程问题。通过matlab的强大功能,可以快速得到偏微分方程数值,并对其进行可视化和进一步的分析。 ### 回答2: 基于MATLAB的偏微分方程差分解法是一种数值解法,用于求偏微分方程的近似差分解法在离散化空间和时间,然后使用差分近似代替偏微分方程中的导数项,最终得到一个代数方程组。 MATLAB提供了一些用于实现偏微分方程差分解法的工具和函数。首先,需要定义初始条件和边界条件,确定求区域和时间范围。然后,将求区域分割成网格,并选择合适的离散化步长。接下来,根据差分近似方法,将偏微分方程转化为代数方程组。 在MATLAB中,可以使用矩阵运算提高计算效率。根据边界条件和初始条件,构建矩阵系统,然后使用线性代数方法求代数方程组,得到近似。最后,根据需要,可以对近似进行可视化和分析。 需要注意的是,选择合适的离散化步长非常重要,步长过大或过小都会影响数值的准确性和计算效率。此外,求偏微分方程可能需要大量的计算资源和时间,对于复杂的问题可能需要优化算法或者使用并行计算。 总之,基于MATLAB的偏微分方程差分解法是一种有效的数值方法。它具有灵活性和适用性,可以用于求各种类型的偏微分方程,包括椭圆型、双曲型和抛物型方程。同时,MATLAB提供了丰富的工具和函数,简化了差分解法的实现过程。 ### 回答3: 基于MATLAB的偏微分方程差分解法是一种使用离散化方法来近似求偏微分方程数值方法。它将偏微分方程中的连续域变量和导数转化为网格上的离散点和差分近似导数。 差分解法的基本思想是将求域划分为离散的网格点,并通过在网格的离散点上近似偏微分方程中的导数项来代替其连续域的形式。对于二维空间中的偏微分方程,可以使用二维矩阵表示网格,并对网格点进行编号。差分解法通过使用中心差分、前向差分或后向差分来近似偏导数,并通过代数运算将离散的导数代入原方程中,得到一个离散的代数方程组。 在MATLAB中,可以使用矩阵和向量的运算来实现差分解法。首先,通过设置合适的网格大小和步长,并初始化离散域上的待求量的初始值。然后,根据差分公式,将偏导数项用离散点上的函数值表示,并将其代入原方程中,形成一个离散的代数方程。最后,使用MATLAB提供的线性代数求函数,如“mldivide”或“lu”等,求得到方程组的,即为原偏微分方程数值近似差分解法是一种简单而有效的数值方法,可以用于求各种类型的偏微分方程,如热传导方程、波动方程、扩散方程等。但需要注意的是,在应用差分解法时,需要合理选择网格大小和步长,以确保数值的准确性和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值