目前最强开源人脸检测算法RetinaFace

文章转载于微信公众号:我爱计算机视觉 

原文链接:https://mp.weixin.qq.com/s/CwMGZUWaopT3HAIXmlowsA

人脸检测为目标检测的特例,是商业化最早的目标检测算法,也是目前几乎各大CV方向AI公司的必争之地。

WIDER FACE数据集是由香港中文大学发布的大型人脸数据集,含32,203幅图像和393,703个高精度人脸包围框,该库中人脸包含尺度、姿态、表情、遮挡和光照等变化。

 

WIDER FACE 几乎是目前评估人脸检测算法最权威的数据集。

RetinaFace 是今年5月份出现的人脸检测算法,当时取得了state-of-the-art,作者也开源了代码,过去了两个月,目前仅以极其微弱的精度差屈居第二名,但因为第一名的AInnoFace算法(来自北京创新奇智公司)没有开源,所以目前RetinaFace可称得上是目前最强的开源人脸检测算法。

 

RetinaFace来自论文RetinaFace: Single-stage Dense Face Localisation in the Wild,作者来自帝国理工学院、InsightFace、Middlesex University London、FaceSoft。

 

相信很多朋友对InsightFace并不陌生,它是目前针对2D与3D人脸分析(含检测、识别、对齐、属性识别等)最知名和开发者最活跃的开源库。RetinaFace代码已经并入该库。

下图为在WIDER FACE 数据集上验证集三个子集的排名靠前的算法结果曲线和精度:

 

下图为在WIDER FACE 数据集上测试集三个子集的排名靠前的算法结果曲线和精度:

 

在6个子集中,RetinaFace取得1个第一名,2个并列第1名,3个以极其微弱精度差屈居于第二名。

RetinaFace使用特征金字塔网络架构:

 

其主要创新点在损失函数的设计。

下图说明了RetinaFace的核心思想:

 

在人脸检测多任务学习中,除了传统的人脸分类损失函数和包围框回归损失函数,作者额外标注了人脸 5 点信息,并以此引入人脸对齐的额外监督信息损失函数,还引入了self-supervised解码分支预测3D人脸信息分支。

集合了更多监督信息和自监督信息,是 RetinaFace 取得成功的关键。

很多时候,人脸检测是为了后续的识别,作者特意将检测结果送入人脸验证网络,在IJB-C test set上测试结果表明可以提高ArcFace的人脸验证精度(TAR=89.59% for FAR=1e-6)。

 

由上图可知,相对于MTCNN,在助力人脸验证上有一致性精度提高的表现。

更为难能可贵的是,使用轻量级骨干网络,RetinaFace算法在CPU上测试VGA图片可以达到实时。如下图:

 

感谢作者的开源,欢迎给大佬加星!

 

论文地址:

https://arxiv.org/pdf/1905.00641.pdf

代码地址:

https://github.com/deepinsight/insightface/tree/master/RetinaFace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值