分形的数学基础

分形的数学基础

- 相似维数

经验维数的提出:对于点、线、平面图形、空间图形以及曲线或曲面组成的几何图形的维数(欧氏维数)分别为0,1,2,3。对于规整几何图形的几何测量是指长度(边长、周长、对角线长)、面积与体积的测量。

所以欧氏几何测量中,可以把这两类图形(分别以正方体和球体作为代表)归纳为如下二点:
(1)长度=l, 面积=l2, 体积=l3(正方体)
(2)长度(半径)=r, 面积=πr2, 体积=πr3(正方体)
整数维(拓扑维或传统的维数):点 —— 零维、线 —— 一维、面 —— 二维、体 —— 三维。

长度、面积和体积的量纲分别是长度单位的1,2,3次方,它们恰好与这些几何图形存在空间的欧氏维数相等,而且均为整数。
在欧氏几何中对规整几何图形的测量,可以用下式来表示:

长度=l
面积A=al2
体积V=bl3

式中a和b为常数,称为几何因子,与具体的几何图形的形状有关。它们是以两点间的直线距离为基础的,而且,它们的量纲数分别等于几何图形存在的空间的维数。
以上讨论的维数都是整数,它们的数值与决定几何形状的变量个数及自由度数是一致的。

以上讨论的维数都是整数,它们的数值与决定几何形状的变量及自由度是一致的。也就是说,直线上的任意点可用1个实数表示,平面上的任意点可用由2个实数组成的数组来表示。在1890年有人对经验维数提出了较深刻的疑问,这是因为只用一个实数来表示二维的正方形上的任意点。用一条曲线即可把平面完全覆盖的最好例子是Peano曲线。

Peano曲线可定义为图中折线的极限。从图中可看出,此曲线同样可以把平面完全覆盖。此曲线属于自相似,与Koch曲线一样,处处不能微分,是分形的一个例子,被称为非规整几何图形。Peano曲线也适用于三维以上,即可用一个实数来表示n维空间图形中的任意点。也就说,如果从自由度角度来考虑,也可把n维空间看成一维,这样就产生了矛盾,为了避免维数定义矛盾,必须从根本上重新考虑维数的定义,为此提出了相似维数(Similarity Dimension)。

一般说来,如果某图形是由把全体缩小为1/a的aD个相似图形构成的,那么此指数D就具有维数的意义。此维数被称之为相似维数。
按相似维数的定义,Peano曲线是由全体缩小1/2的四个图形构成,4=22,所以它的相似维数为2,与正方形的欧氏维数相一致,前面提到的矛盾就得以解决了。相似维数常用Ds表示。按照其定义,Ds完全没有是整数的必要。如某图形是由全体缩小1/a的b个相似所组成,即b=aD, 所以相似维数Ds为

Ds=lnb/lna

其中讨论的Koch曲线,是由把全体缩小成1/3的四个相似形构成的,因此,按Ds=lnb/lna,Koch曲线的相似维数可表示为:
Ds=lnb/lna=ln4/ln3=1.2618

这是一个非整数值,它定量地表示了Koch曲线的复杂程度。分形图形虽然一般都比较复杂,但其复杂程度可用非整数维数去定量化。
分形图形虽然一般都比较复杂,但其复杂程度可用非整数维数去定量化。提出相似维数是把经验维数扩大为非整数值的划时代的进展,但按照其定义,它的适用范围就非常有限,因为只有对具有严格的自相似性的有规分形,才能应用这个维数。所以,定义适用于包括随机图形在内任意图形的维数是很必要的。


- Hausdorff 维数(分数维数 )

设有一条长度为L的线段,若用一长为r的“尺”作为单位去量它,量度的结果是N,我们说这条线段有N尺。显然N的数值与所用尺的大小有关,它们之间具有下列关系:

N(r)=L/r~r-1

同理,若测量的是一块面积为A的平面,这时就用边长为r的单位小正方形去测量它,才能得出确定的N值,其N值为:

N(r)=A/r2~r-2

r越小,测得越准,所需小方块的数目总是比例于A/r2 

如果不是用单位小方块去测量,而仅是用r的尺去直接测量,那是测不出这块面积大小的。由此可见,测量任何一个物体都必须要用一种适合于它的“尺”去量度,才能给出正确的数值。同样,可以用半径为r的小球来填满一块体积V,所需小球的数目比例于V/r3。归纳如下:
对于任何一个有确定维数的几何体,若用与它相同维数的“尺”去量度,则可得到一确定的数值N;若用低于它维数的“尺”去量它,结果为无穷大;若用高于它维数的“尺”去量它,结果为零。其数学表达式为

N(r)~r-DH

两边取对数,得

DH=lnN(r)/ln(1/r)

式中DH称为Hausdorff维数,它可以是整数,也可以是分数,它欧氏几何中的几何体,它们是光滑平整,其D值为1,2,或3,均为整数。但对自然界中的物体,是形形色色的,如Koch曲线,其基本单元由4段等长的线段构成,每段长度为1/3,即N=4,r=1/3

DH=ln4/ln3=1.2618

DH是个比1大的分数,这反映了Koch曲线要比一般的曲线来得复杂和不规则,它是一条处处连续但不可微分的曲线。 

- 欧氏几何维数计算

把一个几何对象的线度放大L倍,若它本身成为原来的几何体的k倍,则该对象的维数是

D=lnK/lnL

例如,把一个正方形,每边放大4倍,图形本身将变为原来的正方形的16倍,即L=4,K=16,所以D=ln16/ln4=2,也就是说,正方形的维数为2。

或者,我们按相反的方式,把一个图形划分为N个大小和形态完全相同的小图形,每一个小图形的线度是原图形的r倍,此时维数为(前面相同)

D=lnN(r)/ln(1/r)

分数维的计算举例:


图(a)表明,人们可以通过一个重复迭加的过程来形成一个分形,而在图(b)中,把一个原来的方块一步步地分割,也构成了一个类似的图形。当k→∞时,上述的二个过程都导致一个分形的形成。
N(L)=5k, L=3k 这里的k表示重复的次数,所以
DH=ln5k/ln3k=1.465…

类似,对逐步分割的情况
N(L)=5k, L=3-k
DH=ln5k/(1/ln3-k)=1.465…

这表明,它们具有相同的Hausdorff维数,DH=1.465。

对分形几何的这一表征并不只限于包含在某一平面之内的数学图形或形态,人们还能计算出诸如河流、海岸线、树木、闪电、云层、血管、神经或肠壁绒毛之类真实物体的分形维数,例如人的动脉的分形维数大约为2.7。


这是一只编程小喵,经常出没在喵屋[AudioMiao]中,挖挖[喵的Github],瞧瞧世界。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值