消息队列基础知识和主流消息队列对比

一、消息队列概述

消息队列(Message Queue,MQ)本质上是一个数据存储队列,用于临时保存和传输消息。

消息中间件是一种基于高效、可靠的消息传递机制,实现跨平台数据通信的工具。它在分布式系统中发挥重要作用,主要用于异步处理、解耦应用、削峰限流、消息通讯,从而提升系统的性能、可用性、扩展性,并确保数据的最终一致性。

目前,常见的消息队列技术包括 ActiveMQ、RabbitMQ、Kafka、RocketMQ 等,每种方案在不同场景下具有独特优势。

img

二、消息队列应用场景

通常来说,使用消息队列主要能为我们的系统带来下面三点好处:

  1. 异步处理
  2. 削峰/限流
  3. 降低系统耦合性

除了这三点之外,消息队列还有其他的一些应用场景,例如实现分布式事务、顺序保证和数据流处理。

异步处理

image-20250213140703868

在处理用户请求时,涉及到的耗时操作可以通过消息队列实现异步化。请求数据被发送到消息队列后,系统立即返回响应,从而减少用户等待时间,提升交互体验。而后续的业务逻辑则由消息消费者进行处理。

然而,由于数据写入消息队列后便立即返回,后续的校验、数据库写入等环节仍可能失败。因此,在使用消息队列进行异步处理时,需要合理调整业务流程。例如,在用户提交订单后,订单信息会先进入消息队列,此时不应直接告知用户“订单提交成功”。只有当订单消费者完成处理,甚至完成库存扣减后,再通过短信或邮件通知用户订单确认成功,以避免交易纠纷。这与日常购买电影票或火车票的流程类似。

削峰限流

在高并发场景下,比如电商秒杀、促销活动,用户请求会在短时间内激增,可能会直接压垮后端服务。削峰限流的核心思想是利用消息队列作为缓冲区,让请求先进入队列,然后由后端服务按照自身处理能力逐步消费,从而避免系统被突发流量冲击导致崩溃。

削峰限流的工作流程:

  1. 用户请求激增:活动开始后,短时间内大量订单请求涌入。
  2. 消息队列缓冲:所有请求先写入消息队列,而不是直接打到数据库或核心业务服务。
  3. 后端逐步消费:后端系统按照自身的处理能力,有节奏地从队列中取出请求进行处理。
  4. 避免系统崩溃:即使瞬时流量过大,消息仍然被队列吸收,后端不会被超载。

示例:电商秒杀场景

  • 传统做法:数百万用户同时提交订单,数据库直接写入,导致数据库崩溃。
  • 使用消息队列后:所有订单请求先进入队列,后端按照自身能力逐步处理,比如每秒处理 1000 个订单,剩余的订单依然在队列中等待,不会导致系统崩溃

削峰

降低系统耦合性

在传统架构中,如果系统 A 需要调用系统 B 的功能,通常是直接调用,这意味着:

  • 系统 A 必须知道系统 B 的地址、接口协议
  • 如果系统 B 改变了接口或不可用,系统 A 可能会崩溃

引入消息队列后,系统 A 和系统 B 之间不再直接通信,而是通过消息队列进行数据传输:

  1. 系统 A(生产者) 只需把消息发送到消息队列。
  2. 系统 B(消费者) 只需从消息队列中消费消息。
  3. 两者不需要相互感知对方的存在,这样就降低了耦合度。

通过引入消息队列,系统之间的直接依赖减少了,修改或新增模块时,只需要调整消息的消费逻辑,不会影响原有系统,大大提高了可扩展性和维护性。

发布/订阅(Pub/Sub)模型

消息队列使用发布-订阅模式工作,消息发送者(生产者)发布消息,一个或多个消息接受者(消费者)订阅消息。 从上图可以看到消息发送者(生产者)和消息接受者(消费者)之间没有直接耦合,消息发送者将消息发送至分布式消息队列即结束对消息的处理,消息接受者从分布式消息队列获取该消息后进行后续处理,并不需要知道该消息从何而来。对新增业务,只要对该类消息感兴趣,即可订阅该消息,对原有系统和业务没有任何影响,从而实现网站业务的可扩展性设计

示例:

例如,我们商城系统分为用户、订单、财务、仓储、消息通知、物流、风控等多个服务。用户在完成下单后,需要调用财务(扣款)、仓储(库存管理)、物流(发货)、消息通知(通知用户发货)、风控(风险评估)等服务。使用消息队列后,下单操作和后续的扣款、发货、通知等操作就解耦了,下单完成发送一个消息到消息队列,需要用到的地方去订阅这个消息进行消费即可。

img

三、如何选择合适的消息队列

如何选择合适的消息队列中间件?

目前主流的消息队列包括 ActiveMQ、RabbitMQ、Kafka、RocketMQ,每种都有其特点和适用场景。在选择合适的消息队列时,可以从以下几个关键因素进行衡量:

1. 开源性

选择开源的消息队列至关重要。如果在实际应用过程中遇到影响业务的 Bug,可以直接修改源码进行修复或规避,而不必被动等待官方发布新版本。此外,开源产品通常有更广泛的社区支持和更快的更新迭代。

2. 社区活跃度

一个活跃的社区意味着更高的稳定性和更好的生态支持。流行的开源项目通常会有更多的用户反馈和 Bug 修复,使用过程中遇到问题也更容易找到解决方案。此外,社区活跃的产品往往能与其他系统更好地集成。

3. 关键技术指标

一个合格的消息队列必须具备以下核心特性:

  • 消息可靠性:支持消息持久化,确保数据不会丢失,即使系统故障也能恢复。
  • 高可用性:支持集群部署,避免单点故障导致系统不可用,同时确保消息不丢失。
  • 性能表现:具备高吞吐、低延迟的能力,能够满足业务需求,避免成为系统瓶颈。

在实际应用中,需要根据业务场景权衡这些因素,选择最合适的消息队列方案。例如,Kafka 适用于高吞吐的日志和流式数据处理,RabbitMQ 更适合事务消息和分布式系统解耦,而 RocketMQ 在大规模高并发场景下表现优秀。

消息队列对比表格

主流消息队列对比(RabbitMQ、ActiveMQ、RocketMQ、Kafka)

特性RabbitMQActiveMQRocketMQKafka
单机吞吐量万级,适用于低并发场景万级,适用于低并发场景十万级,单机可达十万级,性能较高十万级以上,适用于高吞吐场景
Topic 数量对吞吐量的影响Topic 数量过多会影响吞吐量,但影响相对较小Topic 数量过多影响吞吐量,影响较大支持上千个 Topic,吞吐量仅小幅下降,适用于大规模主题应用Topic 数量较多时吞吐量大幅下降,需增加机器资源
消息写入性能RAM 速度为 RocketMQ 的 1/2,Disk 速度约为 RAM 的 1/3依赖磁盘存储,写入性能一般优秀,单机单 Broker 可达 7 万条/s(10 字节消息)极高,百万条/s(10 字节消息)
可用性,主从架构,Master 提供服务,Slave 仅做备份,数据量大时可能产生性能瓶颈,基于 ZooKeeper + LevelDB 的主从架构,支持多 Master、多 Slave,支持同步/异步复制非常高,分布式架构,支持 Replica 机制,Leader 宕机后自动选举
消息延迟微秒级,适用于低延迟场景毫秒级毫秒级毫秒级以内,适用于实时数据处理
消息可靠性,有 Slave 备份,保证数据不丢失可能会有少量数据丢失可通过参数优化配置实现 0 丢失优化后可做到 0 丢失
持久化能力内存 + 文件,支持数据堆积,但影响生产速率内存 + 文件 + 数据库,性能较低磁盘文件,只要磁盘足够大,就能无限堆积磁盘文件,高效持久化
是否有序单个 Client 保证有序支持有序消息支持全局或分区有序消息支持分区有序,多 Client 需自行保证
消息批量操作不支持支持支持支持
集群支持支持,但集群架构较复杂支持支持,高可扩展支持,天然分布式架构
事务支持不支持支持支持,支持分布式事务不支持事务,但可通过低级 API 方式保证“仅消费一次

参考链接

[1]. 秒懂消息队列MQ,万字总结带你全面了解消息队列MQ-阿里云开发者社区

[2]. 消息队列MQ快速入门(概念、RPC、MQ实质思路、队列介绍、队列对比、应用场景)_zmq rpc-CSDN博客

[3]. 消息队列基础知识总结 | JavaGuide

[4]. 10分钟搞懂!消息队列选型全方位对比-腾讯云开发者社区-腾讯云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐州蔡徐坤

又要到饭了兄弟们

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值