分块---优雅的暴力

顾名思义:把长度为n的序列长度切成(根号n)个,把每一块当成一个整体(默认分成根号n个)
                   完整块---被操作区间完全覆盖-----可以作为整体操作
                   不完整块----暴力即可

对于分块类问题,常常可以提取出“在给定区间内进行操作,或询问区间内满足给定条件的元素等”

数列简单分块问题实际上有三项东西要我们思考:
对于每次区间操作:
1.不完整的块 的O(√n)个元素怎么处理?
2.O(√n)个 整块 怎么处理?
3.要预处理什么信息(复杂度不能超过后面的操作)?

 

来一个

1081 线段树练习 2

题目描述 Description

给你N个数,有两种操作

1:给区间[a,b]的所有数都增加X

2:询问第i个数是什么?

输入描述 Input Description

第一行一个正整数n,接下来n行n个整数,再接下来一个正整数Q,表示操作的个数. 接下来Q行每行若干个整数。如果第一个数是1,后接3个正整数a,b,X,表示在区间[a,b]内每个数增加X,如果是2,后面跟1个整数i, 表示询问第i个位置的数是多少。

输出描述 Output Description

对于每个询问输出一行一个答案

样例输入 Sample Input

3

1

2

3

2

1 2 3 2

2 3

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

数据范围

1<=n<=100000

1<=q<=100000

分析:之前敲线段树的模板,现在来回答上文的三个问题

1.不完整块---对于区间加操作,由于分块后不完整块很小,可以直接暴力加上,查询的时候直接无需任何其他操作

2.完整块---对于区间加操作,直接懒惰标记这个区间应该加的数字,查询时加上这个数字即可

3.预处理么,应该就不用了吧(毕竟是道水题。。。)

然后就可以愉快的开始分块了

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5 + 10;
int n,m,x,y,z,q;
int a[maxn],w[maxn],s[maxn];

void add(int l,int r,int x)
{
    for(int i = l;i <= min(r,w[l] * m); ++i) a[i] += x;
    if(w[l] != w[r])
        for(int i = (w[r] - 1) * m;i <= r; ++i) a[i] += x;   //暴力处理不完整块
    for(int i = w[l] + 1;i < w[r]; ++i) s[i] += x;  //整体块视作整体操作
}

int main()
{
    scanf("%d",&n);
    m = sqrt(n);
    for(int i = 1;i <= n; ++i)
        scanf("%d",&a[i]),w[i] = (i - 1) / m + 1;
    scanf("%d",&q);
    for(int i = 1;i <= q; ++i)
    {
        scanf("%d",&x);
        if(x == 2)
            scanf("%d",&x),printf("%d\n",a[x] + s[w[x]]);
        else
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
        }
    }
    return 0;
}

翻了翻大神的博客,发现LOJ上有8/9道分块练习题,一起来看看吧

T1 和题是一样的,区间修改和单点查询,就不再多说了

T2

n个数字,操作为区间加法,和区间查询(查询区间内小于某个数的元素个数)

大佬提供了一种思路(这题数据很弱,暴力能过hhh)

1.对于完整块,要想快速查询小于一数的元素个数,最好就是二分(所以要预先排序),对于每次询问二分出这个值来,区间加法还是上文提到的处理方法

2.不完整块,查询时暴力即可,区间加时要注意重新排一次序

3.预处理:二分要求对每个块预先排序

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 5e4 + 10;
int a[maxn],w[maxn],s[maxn];
int n,m,op,l,r,c;
vector<int>v[300];

void reset(int x)
{
    v[x].clear();
    for(int i = (x - 1) * m + 1;i <= min(n,x * m); ++i)
        v[x].push_back(a[i]);
    sort(v[x].begin(),v[x].end());
}

void add(int l, int r, int c)
{
    for (int i = l; i <= min(w[l] * m, r); ++i) a[i] += c;
    reset(w[l]);   //暴力修改后需要重新排序
    if (w[l] != w[r])
    {
        for (int i = (w[r] - 1) * m + 1; i <= r; ++i) a[i] += c;
        reset(w[r]);
    }
    for (int i = w[l] + 1; i < w[r]; ++i) s[i] += c;
}

void query(int l, int r, int c)
{
    int ans = 0;
    for (int i = l; i <= min(w[l] * m, r); ++i)
        if(a[i] + s[w[i]] < c) ans++;
    if (w[l] != w[r])
        for (int i = (w[r] - 1) * m + 1; i <= r; ++i)
            if(a[i] + s[w[i]] < c) ans++;
    for(int i = w[l] + 1;i < w[r]; ++i)
        ans += lower_bound(v[i].begin(),v[i].end(),c - s[i]) - v[i].begin();
    printf("%d\n",ans);
}

int main()
{
    scanf("%d",&n);
    m = sqrt(n);
    for(int i = 1;i <= n; ++i)
    {
        scanf("%d",&a[i]);
        w[i] = (i - 1) / m + 1;
        v[w[i]].push_back(a[i]);
    }
    for(int i = 1;i <= w[n]; ++i)
        sort(v[i].begin(),v[i].end());   //对每个块预先排序
    for(int i = 0;i < n; ++i)
    {
        scanf("%d%d%d%d",&op,&l,&r,&c);
        if(op) query(l,r,c * c);
        else add(l,r,c);
    }
    return 0;
}

T3 

n个数字,操作为区间加法,区间查询比x小的最大的数字

解1:可以沿袭上一题的二分做法,区间加法不用改,只需稍加改动查询时的操作即可

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 1e5 + 10;
ll a[maxn],w[maxn],s[maxn];
ll n,m,op,l,r,c;
vector<ll>v[1000];

void reset(int x)
{
    v[x].clear();
    for(int i = (x - 1) * m + 1;i <= min(n,x * m); ++i)
        v[x].push_back(a[i]);
    sort(v[x].begin(),v[x].end());
}

void add(ll l, ll r, ll c)
{
    for (int i = l; i <= min(w[l] * m, r); ++i) a[i] += c;
    reset(w[l]);   //暴力修改后需要重新排序
    if (w[l] != w[r])
    {
        for (int i = (w[r] - 1) * m + 1; i <= r; ++i) a[i] += c;
        reset(w[r]);
    }
    for (int i = w[l] + 1; i < w[r]; ++i) s[i] += c;
}

void query(ll l, ll r, ll c)
{
    ll ans = -1e10;
    for (int i = l; i <= min(w[l] * m, r); ++i)
        if(a[i] + s[w[i]] < c) ans = max(ans,a[i] + s[w[i]]);
    if (w[l] != w[r])
        for (int i = (w[r] - 1) * m + 1; i <= r; ++i)
            if(a[i] + s[w[i]] < c) ans = max(ans,a[i] + s[w[i]]);
    for(int i = w[l] + 1;i < w[r]; ++i)
    {
        int x = lower_bound(v[i].begin(),v[i].end(),c - s[i]) - v[i].begin();
        if(x > 0 && v[i][x - 1] + s[i] < c)
            ans = max(ans,v[i][x - 1] + s[i]);
        else if(x == m) ans = max(ans,v[i][m - 1] + s[i]);
    }
    if(ans != -1e10 && ans < c) printf("%lld\n",ans);
    else printf("-1\n");
}

int main()
{
    scanf("%lld",&n);
    m = sqrt(n);
    for(int i = 1;i <= n; ++i)
    {
        scanf("%lld",&a[i]);
        w[i] = (i - 1) / m + 1;
        v[w[i]].push_back(a[i]);
    }
    for(int i = 1;i <= w[n]; ++i)
        sort(v[i].begin(),v[i].end());   //对每个块预先排序
    for(int i = 0;i < n; ++i)
    {
        scanf("%lld%lld%lld%lld",&op,&l,&r,&c);
        if(op) query(l,r,c);
        else add(l,r,c);
    }
    return 0;
}

解二:在块内应用其他结构,比如可以应用set自动排序的功能,其插入和删除也会方便一点

 

T4

n个数字,操作为区间加法和区间求和

预处理每个块的前缀和,区间求和仿照区间加法来操作即可

T5

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值