通用树结构的回顾
-双亲孩子表示法
·每个结点都有一个指向其双亲的指针
·每个结点都有若干个指向其孩子的指针
另一种属性结构模型
-孩子兄弟表示法
·每个节点都有一个指向其第一个孩子的指针
·每个节点都有一个指向其第一个右兄弟的指针
孩子兄弟表示法的特点
-能够表示人意的树形结构
-每个结点包含一个数据成员和两个指针成员
-孩子结点指针和兄弟结点指针构成了“树杈”
二叉树的定义
-二叉树是有n(n>= 0)个结点组成的有限集合,该集合或者为空,或者是有一个根结点加上两颗分别称为左子树和右子树的、互不相交的二叉树组成。
特殊的二叉树
-满二叉树
·如果二叉树中所有分支结点的度数都为2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树
-完全二叉树
·如果一颗觉有n个结点的高度为k的二叉树,它的每一个结点都与高度为k的满二叉树中编号为1-n的结点一一对应,则称这颗二叉树为完全二叉树。(从上到下从左到右编号)
完全二叉树的特性
-同样结点数的二叉树,完全二叉树的高度最小
-完全二叉树的叶节点仅出现在最下面两层
·最底层的叶节点一定出现在左边
·倒数第二层的叶节点一定出现在右边
·完全二叉树中度为1的结点只有左孩子
总结:
-通用树结构采用了双亲结点表示法进行描述
-孩子兄弟表示法哟能力描述任意类型的树结构
-孩子兄弟表示法能够将通用树转化为二叉树
-二叉树最多只有两个孩子的树