科普短文翻译

1、数学界的 “罗塞塔石碑”

本文翻译自:https://www.quantamagazine.org/a-rosetta-stone-for-mathematics-20240506/

1940 年,安德烈・韦伊(André Weil)写信给妹妹西蒙娜(Simone),概述了他在数学三个不同领域之间进行转换的设想。八十年后,这一设想仍推动着该领域许多激动人心的新进展。

1940 年,安德烈・韦伊在法国鲁昂的监狱中,写下了 20 世纪数学领域最重要的信件之一。当时,他因拒绝加入法国军队而服刑,给住在伦敦、颇有成就的哲学家妹妹西蒙娜写信,成了他打发时间的方式之一。

此前,西蒙娜曾让安德烈讲讲他的工作。由于战争阴云笼罩,安德烈在回信时很谨慎,他警告妹妹:“读到后面,你就什么都看不懂了。” 在接下来的 14 页信纸上,他勾勒出了数学界 “罗塞塔石碑” 的构想。就像那块同名的著名碑刻一样 —— 上面用三种语言刻写的文本,通过翻译成古希腊文,让西方读者读懂了古埃及文字 —— 韦伊的 “罗塞塔石碑” 将数学的三个领域联系起来:数论、几何学,以及处于两者之间的有限域研究。

其他数学家也曾提出过类似的想法,但韦伊是第一个明确阐述出完整设想的人。他的这封信为当代数学研究的重要项目 —— 朗兰兹纲领(Langlands program)奠定了基础。

斯坦福大学的布莱恩・康拉德(Brian Conrad)说:“有三个领域彼此之间没有直接的关联,但它们有某些共同特征。经验表明,一个领域的某些问题可以在另一个领域中得到恰当的解释。”

韦伊 “罗塞塔石碑” 的第一个要素是数论,数千年来,数论一直是数学研究中极富魅力的核心部分。数论主要关注整数(即正整数和负整数)以及依赖于整数的函数。数论学家试图证明诸如质数分布规律之类的结论,为此他们会借助数学各个深奥分支的工具。他们还研究被称为数域的数学领域,这些数域概括了整数的一些重要特性。

韦伊 “罗塞塔石碑” 的另一端是几何学。他尤其关注诸如球体、甜甜圈和多洞椒盐卷饼形状的图形。这些图形是某些含有两个变量的方程的解集,比如\(y² = x³ - x\)。这些方程的解可以是 “复数”,复数既有 “实部”(即人们日常生活中使用的数字类型),也有 “虚部”(即实数乘以\(-1\)的平方根,写作\(i\) )。

由于这些图形是多项式方程解的几何体现,利用复分析(微积分的一种形式)的技术,能挖掘出它们的结构。这种结构为证明定理提供了更丰富的工具,这是数论学家无法直接使用的。

19 世纪的数学家们清楚地认识到了这一点,这也促使他们设想,如果能证明关于 “黎曼曲面”(韦伊感兴趣的图形)的定理,再将其转化为数论定理,那该多好。但很多美好的设想并不一定能成为现实,韦伊也向妹妹承认,黎曼曲面理论 “与数论相去甚远。如果二者之间没有一座桥梁,人们将会寸步难行”。

接着,他谈到了这封信的重点:他正在搭建这样一座桥梁。他写道:“正如上帝战胜魔鬼,这座桥梁是存在的。”

韦伊提出的这座桥梁,就是有限域研究。有限域是一种小型数系,它和实数系类似,拥有加法和乘法这两种运算,且运算过程顺畅。有限域采用时钟上那种循环的形式,只不过其元素个数是质数个。比如,假设有一个只有 11 个小时的时钟,从 10 点开始,过两小时后,时间就到了 1 点。(时钟上的小时数必须是质数,除法运算才能正常进行。)

有限域是数论和几何学开始融合的地方。

以含有 0 和 1 两个元素的有限域为例。在这个有限域中,你可以写出多项式(由固定指数的和与积组合而成的函数)。这些多项式的系数(变量前面的数字)只能是 0 或 1,就像下面这两个多项式: 示例 A:\(0x³ + 1x² + 0x + 1\) 示例 B:\(1x³ + 1x² + 1x + 0\)

这些多项式可以仅用它们的系数来表示,而系数会构成一串 0 和 1。整数也可以用 0 和 1 的字符串进行编码,也就是二进制形式,在二进制中,整数被表示为 2 的幂次方之和。比如,1 等于\(2⁰\),2 等于\(2¹\),3 等于\(2¹ + 2⁰\),以此类推。因此,在二进制中,前三个整数分别是 00、01 和 10。

在含有两个元素的有限域中,多项式的系数和整数都被编码为 0 和 1 的字符串。所以,示例 A 中的多项式对应数字 5,因为它的系数 0101 在二进制中表示数字 5;示例 B 中的多项式对应数字 14,因为 1110 在二进制中表示数字 14。

它们还有其他相似之处。有些整数是质数,即它们的因数只有 1 和它本身;而有些整数是合数,即它们是多个质数的乘积。这种质数与合数的区分同样适用于多项式。有些多项式可以分解为更小的、不可再分解的多项式的乘积。这些较小的、不可约的多项式,就相当于多项式世界里的质数。多项式与几何学的概念密切相关,然而在含有两个元素的有限域中,多项式的运算在一定程度上与整数运算类似,这就为在这种情况下将几何直观应用于数论问题提供了可能。

韦伊在给妹妹的信中宣称:“与数域的类比是如此严谨和明显,以至于数论中的任何论证或结论,几乎都能逐字逐句地转换到函数(或有限)域中。” 不过,他也承认,黎曼曲面和有限域之间的差距更大。多项式可以在有限域中表示和分解,但要将复分析的整套方法引入有限域则是另一回事。然而,韦伊自信地断言:“它们之间的差距并没有大到让我们无法通过耐心研究,掌握在两者之间转换的方法。” 接着,他描述了自己的宏伟抱负:

我的工作就像是解读一份用三种语言写成的文本(参照罗塞塔石碑);这三列文字,我都只有零散的片段;对于这三种语言,我各有一些了解;但我也知道,每一列文字的含义都有很大差异,而我事先对此毫无准备。(括号和花括号里的文字由译者添加。)

那是 1940 年的事。在接下来的十年里,韦伊开发出精确的方法,解读了他 “罗塞塔石碑” 上的大量内容。他还对数论和几何学之间的关系提出了一系列猜想。其中最大胆的是有限域版本的黎曼假设,这是数学领域最重要的未解难题之一,与质数的分布等问题相关。(他证明了这个版本在一维情况下的正确性。)

加州大学伯克利分校的爱德华・弗伦克尔(Edward Frenkel)说:“当你把直觉转化为实实在在的东西时,它就变得有价值了。”

20 世纪 50 年代末 60 年代初,亚历山大・格罗滕迪克(Alexander Grothendieck)为了证明韦伊的猜想,在代数几何领域做出了基础性贡献。1973 年,皮埃尔・德利涅(Pierre Deligne)利用格罗滕迪克的方法,证明了韦伊提出的有限域版本的高维黎曼假设。

韦伊的 “罗塞塔石碑” 也为朗兰兹纲领指引着前进的方向。朗兰兹纲领是一个宏大的项目,旨在统一数学中不同的领域。这个项目始于 1967 年,创始人罗伯特・朗兰兹(Robert Langlands)在给韦伊的一封信中阐述了他的想法,表达了将数论内部不同研究分支联系起来的愿望。后来,在 20 世纪 80 年代初,亚历山大・贝林森(Alexander Beilinson)和弗拉基米尔・德里菲尔德(Vladimir Drinfeld)定义了朗兰兹纲领的几何版本,将朗兰兹的设想扩展到数论和几何学之间的联系。

在过去几年里,朗兰兹纲领取得的一些最重要进展,都涉及罗伯特・朗兰兹最初提出的数论版本和后来的几何版本之间的转换。这些转换遵循了韦伊 “罗塞塔石碑” 中提出的方法。

2021 年,洛朗・法尔盖(Laurent Fargues)和彼得・舒尔茨(Peter Scholze)完成了对法尔盖 - 丰唐曲线(Fargues-Fontaine curve)的研究工作,这为朗兰兹纲领的几何版本和数论版本之间提供了首个直接的转换方式。最近几个月,弗伦克尔、帕维尔・埃廷戈夫(Pavel Etingof)和大卫・卡日丹(David Kazhdan)进一步强化了这两个版本之间的联系。他们以更符合朗兰兹最初设想的方式重新定义了几何朗兰兹纲领,使得两个版本之间的转换更加精确。

对弗伦克尔来说,韦伊 “罗塞塔石碑” 的影响体现了数学发展的方式。有些新想法是现有知识的合理延伸,但另一些(往往是最重要的那些想法)则完全是原创的。

弗伦克尔说:“这些想法似乎凭空而来,不那么实在,也不容易追溯其源头。” 但他指出,韦伊的想法可不只是一个梦想。“每个人都有梦想,” 弗伦克尔说,“韦伊不仅在信中清晰地阐述了这个梦想,还将其转化为了实实在在的成果。”

编者注:文中引用的韦伊信件内容由马丁・克里格(Martin Krieger)从法语翻译而来。

更正:2024 年 5 月 6 日 本文最初称不可约多项式的系数编码了质数,实际并非如此,不过不可约多项式和质数类似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值