python 统计list中各个元素出现的频数

统计列表元素频数
部署运行你感兴趣的模型镜像

统计list中元素出现的频数有三种:

利用字典统计
利用Python的collection包下的Counter类统计
利用Python的pandas包下的value_counts类统计

一、利用字典统计

利用Python字典的键值对来进行统计。
逻辑就是,生成一个字典,将要统计的列表作为字典的键,然后对字典该键进行赋值,赋值方法采用字典的dict.get()函数。
Python 字典get() 函数返回指定键的值,如果值不在字典中返回默认值。

dict.get(key, default=None)

例:

a_list = ['dog', 'cat', 'dog', 'pig', 'pig', 'dog']
freq_dict = {}
for x in a_list :
    freq_dict[x] = freq_dict.get(x, 0) + 1
print(freq_dict)

输出结果:

{'dog': 3, 'cat': 1, 'pig': 2}
二、利用Python的collection包下Counter的类

例:

from collections import Counter
a = [1, 2, 3, 1, 1, 2]
result = Counter(a)
print result

输出结果:

{1: 3, 2: 2, 3: 1}

注:python中的collections 模块----Python标准库,是数据结构常用模块。
Counter主要功能:将元素数量统计,然后计数返回一个字典,键为元素,值为元素个数。
例:

from collections import  Counter

str="abcbcaccbbad"
li=[2,3,43,3,45,54,33,33,1]
d={'d':3,'f':4,'g':3,'h':5}

#获取元素个数,返回字典
print(dict(Counter(str)))
print(dict(Counter(d)))
print(dict(Counter(li)))

#most_common(int) 按照元素出现的次数进行从高到低的排序,返回前int个元素的字典
print(Counter(str).most_common(2))

#elements返回经过计算器Counter后的元素,返回的是一个迭代器
print(''.join(Counter(str).elements()))

#update更新,做加法,加上对应的个数
x=Counter(str)
x.update("sas1")
print(dict(x))

#subtract,做减法,减去对于的个数
y=Counter(li)
y.subtract([3,2])
print(dict(y))
print(y)

#获取key和value
print(list(Counter(str).items())) #字典的key和value
print(list(Counter(str).keys())) #字典的key
print(list(Counter(str).values())) #字典的value

输出结果:

{‘a’: 3, ‘b’: 4, ‘c’: 4, ‘d’: 1}
{‘d’: 3, ‘f’: 4, ‘g’: 3, ‘h’: 5}
{2: 1, 3: 2, 43: 1, 45: 1, 54: 1, 33: 2, 1: 1}
[(‘b’, 4), (‘c’, 4)]
aaabbbbccccd
{‘a’: 4, ‘b’: 4, ‘c’: 4, ‘d’: 1, ‘s’: 2, ‘1’: 1}
{2: 0, 3: 1, 43: 1, 45: 1, 54: 1, 33: 2, 1: 1}
Counter({33: 2, 3: 1, 43: 1, 45: 1, 54: 1, 1: 1, 2: 0})
[(‘a’, 3), (‘b’, 4), (‘c’, 4), (‘d’, 1)]
[‘a’, ‘b’, ‘c’, ‘d’]
[3, 4, 4, 1]

三、Python的pandas包下的value_counts方法

例:

import pandas as pd
a = [1, 2, 3, 1, 1, 2]
result = pd.value_counts(a)
print result

输出结果:
1 3
2 2
3 1

注:利用pandas下的value_counts(),不仅可以统计list中各个元素出现的个数,还可对矩阵中的元素进行进行统计。

例:

import pandas as pd
a = pd.DataFrame([[1,2,3],
                  [3,1,3],
                  [1,2,1]])
result = a.apply(pd.value_counts)
print result

输出结果:

        0        1        2 
  1    2.0     1.0       1.0        # 表示元素1在第一列出现2次,在第二列出现1次,在第三列出现1次
  2    NaN     2.0       NaN        # 表示元素2在第一列出现0次,在第二列出现2次,在第三列出现0次 
  3    1.0     NaN       2.0       # 表示元素3在第一列出现1次,在第二列出现0次,在第三列出现2次

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 统计 List 集合中特定元素的出现次数 #### R语言中的实现方式 在R语言里,如果想要计算列表(list)集合内特定元素的出现频率,可以通过`table()`函数来完成这一目标。此函数能够返回各个水平(即不同取值)下的频数分布情况[^1]。 ```r # 创建一个简单的向量作为例子 vec <- c('apple', 'banana', 'apple', 'orange', 'banana', 'apple') # 使用 table() 计算各元素数量 element_counts <- as.list(table(vec)) print(element_counts) ``` 上述代码片段展示了如何利用内置的 `table()` 方法获取给定向量 vec 中每个唯一项的数量,并将结果转化为列表形式以便于查看。 #### Java中的实现方式 对于Java而言,在处理此类需求时通常会借助HashMap这种键值对结构的数据容器来进行统计工作。遍历整个数组或者集合,每当遇到一次目标元素就增加对应key所关联value的一个单位直至结束循环过程[^2]。 ```java import java.util.*; public class ElementCounter { public static void main(String[] args){ ArrayList<String> list = new ArrayList<>(Arrays.asList("red", "blue", "green", "red")); Map<String, Integer> frequencyMap = new HashMap<>(); for (String item : list){ int freq = frequencyMap.getOrDefault(item, 0); frequencyMap.put(item, freq + 1); } System.out.println(frequencyMap); } } ``` 这段示例说明了怎样通过创建哈希映射表frequencyMap 来记录list 列表里面每一个成员重复了多少次;最后输出该映射表示的结果集。 #### Python中的实现方式 Python 提供了一种非常简洁的方式来解决这个问题——使用字典(dict),它允许程序员轻松地追踪任何可散列对象(如字符串、整型等)在整个序列里的累积数目。下面给出的例子正是基于这一点设计而成[^3]: ```python def count_elements(lst): counts = {} for element in lst: if element not in counts: counts[element] = 0 counts[element] += 1 return counts if __name__ == "__main__": sample_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] result = count_elements(sample_list) print(result) ``` 以上脚本定义了一个名为count_elements 的辅助函数用于接收待分析的一维列表参数lst ,并通过迭代更新内部维护着的对象counts 实现最终目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值