题目
我们得到了一副藏宝图,藏宝图显示,在一个迷宫中存在着未被世人发现的宝藏。
迷宫是一个二维矩阵,用一个字符串数组表示。它标识了唯一的入口(用 ‘S’ 表示),和唯一的宝藏地点(用 ‘T’ 表示)。但是,宝藏被一些隐蔽的机关保护了起来。在地图上有若干个机关点(用 ‘M’ 表示),只有所有机关均被触发,才可以拿到宝藏。
要保持机关的触发,需要把一个重石放在上面。迷宫中有若干个石堆(用 ‘O’ 表示),每个石堆都有无限个足够触发机关的重石。但是由于石头太重,我们一次只能搬一个石头到指定地点。
迷宫中同样有一些墙壁(用 ‘#’ 表示),我们不能走入墙壁。剩余的都是可随意通行的点(用 ‘.’ 表示)。石堆、机关、起点和终点(无论是否能拿到宝藏)也是可以通行的。
我们每步可以选择向上/向下/向左/向右移动一格,并且不能移出迷宫。搬起石头和放下石头不算步数。那么,从起点开始,我们最少需要多少步才能最后拿到宝藏呢?如果无法拿到宝藏,返回 -1 。
示例1
输入:
[“S#O”, “M…”, “M.T”]
输出:
16
解释:
最优路线为: S->O, cost = 4, 去搬石头 O->第二行的M, cost = 3, M机关触发 第二行的M->O, cost = 3, 我们需要继续回去 O 搬石头。 O->第三行的M, cost = 4, 此时所有机关均触发 第三行的M->T, cost = 2,去T点拿宝藏。 总步数为16。
示例1
输入:
[“S#O”, “M.#”, “M.T”]
输出:
-1
解释:
我们无法搬到石头触发机关
示例1
输入:
[“S#O”, “M.T”, “M…”]
输出:
17
解释:
注意终点也是可以通行的。
限制:
1 <= maze.length <= 100
1 <= maze[i].length <= 100
maze[i].length == maze[j].length
S 和 T 有且只有一个
0 <= M的数量 <= 16
0 <= O的数量 <= 40,题目保证当迷宫中存在 M 时,一定存在至少一个 O 。
解法
- 经过简单的模拟,我们可以知道走法分为4种
- S到O 捡石头
- O到M 用石头触发机关
- M到O 到下个地方捡石头
- M到T 所有机关触发,走出迷宫
- 由于这些点都不会移动,我们要做大量的预处理工作,计算几个特殊点之间的距离(BFS)
- 需要计算的距离
- 一开始我们都是从S点出发,需要走到一个O点拿石头,再到M点才能让这个点触发。对于M来说,寻找合适的O点,使S到M的距离最短。
- 当到达M点时,我们需要再走到一个O点拿石头,再去M‘点,而对于M’来说,寻找合适的O点,使M到M‘的距离最短,用d(i,j)表示第i个M到第j个M经过一个O点的最短距离
- 计算所有M点到T点的距离
- M的触发顺序不同会导致行走的路径不同,用16位的二进制mask表示是否已经走到M点
- 这个二进制数的第i位为1,表示第i个M已经触发,为0表示第i个M还未被触发
- 当n = 16,mask= 0000 1100 0001 0001 已经走的点时M1,M5,M11,M12,这些点合称为触发了的集合
- 定义dp(mask,i)表示当前在第i个M处,触发状态为mask的最小步数
- 动态转移方程 :dp(mask,i) = min(dp(mask xor 2^i,j) + d(j,i)) j!=i,j属于触发了的集合
- mask xor 2^i 表示从集合中去除第i个M,在第i个M没有触发的情况下
- 现在的状态是:mask记录之前所有M点的情况(包括触发和不触发),现已到第i个M点(触发了)
- 这个状况是怎么转移过来的呢?在所有已经触发的集合中,找到第j个M点,能够使在j点触发 + d(j,i)的距离最小,
- 循环实现
dp(mask|2^j,j) = min(dp(mask,j)+d(j,i))
- 动态转移方程 :dp(mask,i) = min(dp(mask xor 2^i,j) + d(j,i)) j!=i,j属于触发了的集合
- 注意边界
代码
#include <stdio.h>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
class Solution {
public:
//四个方向搜索
int dx[4] = {1, -1, 0, 0};
int dy[4] = {0, 0, 1, -1};
int n, m;
//判断边界
bool inBound(int x, int y) {
return x >= 0 && x < n && y >= 0 && y < m;
}
//从这个点开始,与其他点的距离,维度(n,m)
vector<vector<int>> bfs(int x, int y, vector<string>& maze) {
vector<vector<int>> ret(n, vector<int>(m, -1));
//标记这个点开始要走了
ret[x][y] = 0;
queue<pair<int, int>> Q;
Q.push({x, y});
while (!Q.empty()) {
pair<int,int> p = Q.front();
Q.pop();
int x = p.first, y = p.second;
for (int k = 0; k < 4; k++) {
int nx = x + dx[k], ny = y + dy[k];//四个方向开始寻找
//不能走出边界,不能到障碍物,还没有被走过
if (inBound(nx, ny) && maze[nx][ny] != '#' && ret[nx][ny] == -1) {
ret[nx][ny] = ret[x][y] + 1;
Q.push({nx, ny});
}
}
}
return ret;
}
int minimalSteps(vector<string>& maze) {
n = maze.size(), m = maze[0].size();
vector<pair<int, int>> buttons, stones;
int sx, sy, tx, ty;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (maze[i][j] == 'M') { //机关
buttons.push_back({i, j});
}
if (maze[i][j] == 'O') { //石头
stones.push_back({i, j});
}
if (maze[i][j] == 'S') {//起点
sx = i, sy = j;
}
if (maze[i][j] == 'T') {//终点
tx = i, ty = j;
}
}
}
int nb = buttons.size();
int ns = stones.size();
//计算从S出发到各个点的距离
vector<vector<int>> start_dist = bfs(sx, sy, maze);
// 边界情况:没有机关,从S直接到T
if (nb == 0) {
return start_dist[tx][ty];
}
// 从某个机关到其他机关 / 起点与终点的最短距离,已经过O点。
vector<vector<int>> dist(nb, vector<int>(nb + 2, -1));
vector<vector<vector<int>>> dd(nb);
for (int i = 0; i < nb; i++) {
//第i个机关,与其他点的距离,d的维度为(n,m)
vector<vector<int>> d = bfs(buttons[i].first, buttons[i].second, maze);
//每个机关都有一个维度为(n,m)的距离数组,dd的维度为(nb,n,m)
dd[i] = d;
//对于已经触发的第i个机关,到终点的距离
dist[i][nb + 1] = d[tx][ty];
}
for (int i = 0; i < nb; i++) {
//对于第i个机关,找到该M从S->O->M最近的距离
//1.一开始我们都是从S点出发,需要走到一个O点拿石头,再到M点才能让这个点触发。对于M来说,寻找合适的O点,使S到M的距离最短。
int tmp = -1;
for (int k = 0; k < ns; k++) { //ns个石头区
int mid_x = stones[k].first, mid_y = stones[k].second; //第k个石头的下标
//第i个机关能到达第k个石头区,且从S能到达第k个石头区
if (dd[i][mid_x][mid_y] != -1 && start_dist[mid_x][mid_y] != -1) {
if (tmp == -1 || tmp > dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y]) {
//更新距离为 第i个机关到第k个石头区的距离 + S到第k个石头的距离
tmp = dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y];
}
}
}
dist[i][nb] = tmp;//从第i个机关与起点最短距离,已经过O点,或者说从起点出发,触发第i个机关的最短距离。
//对于第i个机关,找到该M从M->O->M’最近的距离
//2.当到达M点时,我们需要再走到一个O点拿石头,再去M‘点,而对于M’来说,寻找合适的O点,使M到M‘的距离最短,
for (int j = i + 1; j < nb; j++) { //M' != M
int mn = -1;
for (int k = 0; k < ns; k++) {
int mid_x = stones[k].first, mid_y = stones[k].second;
//第i个机关能到达第k个石头区,且第j个机关也能到达第k个石头区
if (dd[i][mid_x][mid_y] != -1 && dd[j][mid_x][mid_y] != -1) {
if (mn == -1 || mn > dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y]) {
//更新距离为第i个机关到第k个石头区的距离 + 第j个机关到第k个石头区的距离
mn = dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y];
}
}
}
dist[i][j] = mn;//i到j和j到i距离相同
dist[j][i] = mn;
}
}
// 无法达成的情形,有一个机关不能从S到达,或者不能到达终点
for (int i = 0; i < nb; i++) {
if (dist[i][nb] == -1 || dist[i][nb + 1] == -1) return -1;
}
// 初始化dp,-1为未到达
vector<vector<int>> dp(1 << nb, vector<int>(nb, -1)); //nb为机关个数
//1.S->O->M
for (int i = 0; i < nb; i++) {
//1 << i代表只有第i个M点被触发时所需要的距离
dp[1 << i][i] = dist[i][nb];
}
//2.M->O->M'
for (int mask = 1; mask < (1 << nb); mask++) {
for (int i = 0; i < nb; i++) {
// 当前 dp 是合法的,并且从第i个节点开始
if (mask & (1 << i)) {
for (int j = 0; j < nb; j++) {
// 寻找j,并且j不在 mask 里
if (!(mask & (1 << j))) {
//把j加入mask,并更新
int next = mask | (1 << j);
if (dp[next][j] == -1 || dp[next][j] > dp[mask][i] + dist[i][j]) {
dp[next][j] = dp[mask][i] + dist[i][j];
}
}
}
}
}
}
//3.M->T
int ret = -1;
int final_mask = (1 << nb) - 1;//最后的情况
//寻找所有机关都被触发时,且停留在第i个机关上的距离,和从第i个机关到终点距离最短的
for (int i = 0; i < nb; i++) {
if (ret == -1 || ret > dp[final_mask][i] + dist[i][nb + 1]) {
ret = dp[final_mask][i] + dist[i][nb + 1];
}
}
return ret;
}
};
int main()
{
vector<string> maze;
maze[0] = "S#O";
maze[1] = "M..";
maze[2] = "M.T";
Solution s;
cout<<s.minimalSteps(maze);
}
今天也是爱zz的一天哦!