LeetCode-寻宝

这个题完全没有思路,只能看题解了:

class Solution {
    int[] dx = {1, -1, 0, 0};
    int[] dy = {0, 0, 1, -1};
    int n, m;

    public int minimalSteps(String[] maze) {
        n = maze.length;
        m = maze[0].length();
        // 机关 & 石头
        List<int[]> buttons = new ArrayList<int[]>();
        List<int[]> stones = new ArrayList<int[]>();
        // 起点 & 终点
        int sx = -1, sy = -1, tx = -1, ty = -1;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (maze[i].charAt(j) == 'M') {
                    buttons.add(new int[]{i, j});
                }
                if (maze[i].charAt(j) == 'O') {
                    stones.add(new int[]{i, j});
                }
                if (maze[i].charAt(j) == 'S') {
                    sx = i;
                    sy = j;
                }
                if (maze[i].charAt(j) == 'T') {
                    tx = i;
                    ty = j;
                }
            }
        }
        int nb = buttons.size();
        int ns = stones.size();
        int[][] startDist = bfs(sx, sy, maze);

        // 边界情况:没有机关
        if (nb == 0) {
            return startDist[tx][ty];
        }
        // 从某个机关到其他机关 / 起点与终点的最短距离。
        int[][] dist = new int[nb][nb + 2];
        for (int i = 0; i < nb; i++) {
            Arrays.fill(dist[i], -1);
        }
        // 中间结果
        int[][][] dd = new int[nb][][];
        for (int i = 0; i < nb; i++) {
            int[][] d = bfs(buttons.get(i)[0], buttons.get(i)[1], maze);
            dd[i] = d;
            // 从某个点到终点不需要拿石头
            dist[i][nb + 1] = d[tx][ty];
        }

        for (int i = 0; i < nb; i++) {
            int tmp = -1;
            for (int k = 0; k < ns; k++) {
                int midX = stones.get(k)[0], midY = stones.get(k)[1];
                if (dd[i][midX][midY] != -1 && startDist[midX][midY] != -1) {
                    if (tmp == -1 || tmp > dd[i][midX][midY] + startDist[midX][midY]) {
                        tmp = dd[i][midX][midY] + startDist[midX][midY];
                    }
                }
            }
            dist[i][nb] = tmp;
            for (int j = i + 1; j < nb; j++) {
                int mn = -1;
                for (int k = 0; k < ns; k++) {
                    int midX = stones.get(k)[0], midY = stones.get(k)[1];
                    if (dd[i][midX][midY] != -1 && dd[j][midX][midY] != -1) {
                        if (mn == -1 || mn > dd[i][midX][midY] + dd[j][midX][midY]) {
                            mn = dd[i][midX][midY] + dd[j][midX][midY];
                        }
                    }
                }
                dist[i][j] = mn;
                dist[j][i] = mn;
            }
        }

        // 无法达成的情形
        for (int i = 0; i < nb; i++) {
            if (dist[i][nb] == -1 || dist[i][nb + 1] == -1) {
                return -1;
            }
        }
        
        // dp 数组, -1 代表没有遍历到
        int[][] dp = new int[1 << nb][nb];
        for (int i = 0; i < 1 << nb; i++) {
            Arrays.fill(dp[i], -1);
        }
        for (int i = 0; i < nb; i++) {
            dp[1 << i][i] = dist[i][nb];
        }
        
        // 由于更新的状态都比未更新的大,所以直接从小到大遍历即可
        for (int mask = 1; mask < (1 << nb); mask++) {
            for (int i = 0; i < nb; i++) {
                // 当前 dp 是合法的
                if ((mask & (1 << i)) != 0) {
                    for (int j = 0; j < nb; j++) {
                        // j 不在 mask 里
                        if ((mask & (1 << j)) == 0) {
                            int next = mask | (1 << j);
                            if (dp[next][j] == -1 || dp[next][j] > dp[mask][i] + dist[i][j]) {
                                dp[next][j] = dp[mask][i] + dist[i][j];
                            }
                        }
                    }
                }
            }
        }

        int ret = -1;
        int finalMask = (1 << nb) - 1;
        for (int i = 0; i < nb; i++) {
            if (ret == -1 || ret > dp[finalMask][i] + dist[i][nb + 1]) {
                ret = dp[finalMask][i] + dist[i][nb + 1];
            }
        }

        return ret;
    }

    public int[][] bfs(int x, int y, String[] maze) {
        int[][] ret = new int[n][m];
        for (int i = 0; i < n; i++) {
            Arrays.fill(ret[i], -1);
        }
        ret[x][y] = 0;
        Queue<int[]> queue = new LinkedList<int[]>();
        queue.offer(new int[]{x, y});
        while (!queue.isEmpty()) {
            int[] p = queue.poll();
            int curx = p[0], cury = p[1];
            for (int k = 0; k < 4; k++) {
                int nx = curx + dx[k], ny = cury + dy[k];
                if (inBound(nx, ny) && maze[nx].charAt(ny) != '#' && ret[nx][ny] == -1) {
                    ret[nx][ny] = ret[curx][cury] + 1;
                    queue.offer(new int[]{nx, ny});
                }
            }
        }
        return ret;
    }

    public boolean inBound(int x, int y) {
        return x >= 0 && x < n && y >= 0 && y < m;
    }
}

 这个题解我觉得好理解一点

    // 起点与终点,统计所有的石头和机关的坐标
    Point startPoint = null;
    Point endPoint = null;
    List<Point> stones = new ArrayList<>();
    List<Point> triggers = new ArrayList<>();

    // java 为了看的方便起见, string maze -> matrix
    char[][] mat = new char[n][m];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            mat[i][j] = maze[i].charAt(j);
        }
    }
    // init maze
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (mat[i][j] == 'S') {
                startPoint = new Point(i, j);
                mat[i][j] = '.';
                continue;
            }
            if (mat[i][j] == 'T') {
                endPoint = new Point(i, j);
                mat[i][j] = '.';
                continue;
            }
            if (mat[i][j] == 'O') {
                stones.add(new Point(i, j));
                mat[i][j] = '.';
                continue;
            }
            if (mat[i][j] == 'M') {
                triggers.add(new Point(i, j));
                mat[i][j] = '.';
            }
        }
    }
    // 原本是: 起点(S) -> 石堆 -> 机关 -> 石堆 -> 机关 ... -> 石堆 -> 机关 -> 终点(T)
    // 为了方便, 把起点认为是机关, 终点认为是石堆, 比较方便
    // 就变为: 机关(S) -> 石堆 -> 机关 -> 石堆 -> 机关 ... -> 石堆 -> 机关 -> 石堆(T)
    triggers.add(startPoint);
    stones.add(endPoint);

 2. 计算点与点之间的距离--BFS

    /**
     * BFS: 从给定起点到给定终点最少需要走多少步
     *
     * @param from 起点
     * @param to   终点
     * @return 步数
     */
    private int bfs(Point from, Point to, char[][] maze) {
        // 特判: 如果是墙壁, 返回 -1
        if (maze[from.x][from.y] == '#') {
            return -1;
        }
        // 初始化 dist 数组
        for (int[] a : dist) {
            Arrays.fill(a, -1);
        }
        queue.offer(from);
        dist[from.x][from.y] = 0;

        while (!queue.isEmpty()) {
            Point cur = queue.poll();
            int x = cur.x;
            int y = cur.y;
            for (int i = 0; i < 4; i++) {
                int nx = x + dir[i];
                int ny = y + dir[i + 1];
                if (nx < 0 || nx >= n || ny < 0 || ny >= m || maze[nx][ny] == '#') continue;
                if (dist[nx][ny] == -1) {
                    dist[nx][ny] = dist[x][y] + 1;
                    queue.offer(new Point(nx, ny));
                }
            }
        }
        return dist[to.x][to.y];
    }

 3. 计算 tsDist 数组与 ttDist 数组

    // tsDist[][] : trigger to stone dist,机关到石头的最短距离
    // ttDist[][] : trigger to trigger dist,机关到机关的最短距离

    int p = stones.size() - 1;
    int q = triggers.size() - 1;

    // 初始化 tsDist 数组: 计算任意一个机关(trigger) i 到任意一个石堆(stone) j 的距离
    for (int i = 0; i <= q; i++) {
        for (int j = 0; j <= p; j++) {
            tsDist[i][j] = bfs(triggers.get(i), stones.get(j), mat);
        }
    }

    // 初始化 ttDist 数组: 当前位于第 i 个机关,下一步要开启第 j 个机关,最少要走多少步
    // 即第 i 个机关走向某个石堆 k,再从该石堆走向机关 j 的步数, floyd
    for (int i = 0; i <= q; i++) {
        for (int j = 0; j <= q; j++) {
            ttDist[i][j] = INF;
            // 枚举石堆, 不算终点
            for (int k = 0; k < p; k++) {
                if (tsDist[i][k] == -1 || tsDist[j][k] == -1) continue;
                int cost = tsDist[i][k] + tsDist[j][k];
                ttDist[i][j] = Math.min(ttDist[i][j], cost);
            }
        }
    }

 

    // 初始化 dp 数组
    for (int[] a : f) {
        Arrays.fill(a, -1);
    }
    // 起点就是第q个机关,此时所有机关都是关着的,status 为 0,最少需要 0 步
    f[q][0] = 0;

    // 枚举机关所有状态 staus
    int lim = 1 << q;
    for (int s = 0; s < lim; s++) {
        // 枚举位于第 i 个机关
        for (int i = 0; i <= q; i++) {
            if (f[i][s] == -1) continue;
            // 枚举下一步开启机关 j
            for (int j = 0; j < q; j++) {
                // 相同机关, 继续
                if (i == j) continue;
                // 机关被开启了, 继续
                if (((s >> j) & 1) != 0) continue;
                // 第i个机关到第j个机关走不通, 继续
                if (ttDist[i][j] == INF) continue;
                int cost = ttDist[i][j];
                // next status
                int ns = s | (1 << j);
                if (f[j][ns] == -1 || f[j][ns] > f[i][s] + cost) {
                    f[j][ns] = f[i][s] + cost;
                }
            }
        }
    }

 5. 获取结果

    int res = INF;
    // 枚举任意一个机关, 包括 startPoint
    for (int i = 0; i <= q; i++) {
        // 该状态没有被更新,继续
        if (f[i][lim - 1] == -1) {
            continue;
        }
        // 机关到终点走不通,继续
        if (tsDist[i][p] == -1) {
            continue;
        }
        // 结果 = 所有机关全部开启的最少步数 + 当前机关走到终点的最少步数
        int cur = f[i][lim - 1] + tsDist[i][p];
        res = Math.min(res, cur);
    }

 代码如下

class Solution {
    private int[][] dist;
    private Queue<Point> queue;
    private int[] dir = {-1, 0, 1, 0, -1};  // 压缩方向数组,二维变一维, {-1,0},{0,1},{1,0},{0,-1}
    private int n;
    private int m;
    private int[][] tsDist; // trigger to stone dist
    private int[][] ttDist;  // trigger to trigger dist
    private int[][] f;
    private int INF = 0x3f3f3f3f;

    public int minimalSteps(String[] maze) {
        this.n = maze.length;
        this.m = maze[0].length();
        dist = new int[150][150];
        tsDist = new int[20][45];
        ttDist = new int[20][20];
        f = new int[20][1 << 16];
        queue = new LinkedList<>();

        Point startPoint = null;
        Point endPoint = null;
        List<Point> stones = new ArrayList<>();
        List<Point> triggers = new ArrayList<>();

        // 为了方便, string maze -> matrix
        char[][] mat = new char[n][m];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                mat[i][j] = maze[i].charAt(j);
            }
        }
        // init maze
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (mat[i][j] == 'S') {
                    startPoint = new Point(i, j);
                    mat[i][j] = '.';
                    continue;
                }
                if (mat[i][j] == 'T') {
                    endPoint = new Point(i, j);
                    mat[i][j] = '.';
                    continue;
                }
                if (mat[i][j] == 'O') {
                    stones.add(new Point(i, j));
                    mat[i][j] = '.';
                    continue;
                }
                if (mat[i][j] == 'M') {
                    triggers.add(new Point(i, j));
                    mat[i][j] = '.';
                }
            }
        }

        // 起点(S) -> 石堆 -> 机关 -> 石堆 -> 机关 ... -> 石堆 -> 机关 -> 终点(T)
        // 更为统一的: 把起点认为是机关, 终点认为是石堆, 比较方便
        // 机关(S) -> 石堆 -> 机关 -> 石堆 -> 机关 ... -> 石堆 -> 机关 -> 石堆
        triggers.add(startPoint);
        stones.add(endPoint);

        int p = stones.size() - 1;
        int q = triggers.size() - 1;

        // 初始化 tsDist 数组: 计算任意一个机关(trigger) i 到任意一个石堆(stone) j 的距离
        for (int i = 0; i <= q; i++) {
            for (int j = 0; j <= p; j++) {
                tsDist[i][j] = bfs(triggers.get(i), stones.get(j), mat);
            }
        }

        // 初始化 ttDist 数组:当前位于第 i 个机关,下一步要开启第 j 个机关,最少要走多少步
        // 即第 i 个机关走向某个石堆 k,再从该石堆走向机关 j 的步数, floyd
        for (int i = 0; i <= q; i++) {
            for (int j = 0; j <= q; j++) {
                ttDist[i][j] = INF;
                // 枚举石堆, 不算终点
                for (int k = 0; k < p; k++) {
                    if (tsDist[i][k] == -1 || tsDist[j][k] == -1) continue;
                    int cost = tsDist[i][k] + tsDist[j][k];
                    ttDist[i][j] = Math.min(ttDist[i][j], cost);
                }
            }
        }

        // 初始化 dp 数组
        for (int[] a : f) {
            Arrays.fill(a, -1);
        }
        // 最后一个起点0表示未开启。
        f[q][0] = 0;

        // 枚举机关所有状态 staus
        int lim = 1 << q;
        for (int s = 0; s < lim; s++) {
            // 枚举位于第 i 个机关
            for (int i = 0; i <= q; i++) {
                if (f[i][s] == -1) continue;
                // 枚举下一步开启机关 j
                for (int j = 0; j < q; j++) {
                    // 相同机关, 继续
                    if (i == j) continue;
                    // 机关被开启了, 继续
                    if (((s >> j) & 1) != 0) continue;
                    // 第i个机关到第j个机关走不通, 继续
                    if (ttDist[i][j] == INF) continue;
                    int cost = ttDist[i][j];
                    int ns = s | (1 << j);
                    if (f[j][ns] == -1 || f[j][ns] > f[i][s] + cost) {
                        f[j][ns] = f[i][s] + cost;
                    }
                }
            }
        }

        int res = INF;
        for (int i = 0; i <= q; i++) {
            if (f[i][lim - 1] == -1) {
                continue;
            }
            if (tsDist[i][p] == -1) {
                continue;
            }
            int cur = f[i][lim - 1] + tsDist[i][p];
            res = Math.min(res, cur);
        }
        return res == INF ? -1 : res;
    }


    /**
     * BFS: 从给定起点到给定终点最少需要走多少步
     *
     * @param from 起点
     * @param to   终点
     * @return 步数
     */
    private int bfs(Point from, Point to, char[][] maze) {
        // 特判: 如果是墙壁, 返回-1
        if (maze[from.x][from.y] == '#') {
            return -1;
        }
        // 初始化 dist 数组
        for (int[] a : dist) {
            Arrays.fill(a, -1);
        }
        queue.offer(from);
        dist[from.x][from.y] = 0;

        while (!queue.isEmpty()) {
            Point cur = queue.poll();
            int x = cur.x;
            int y = cur.y;
            for (int i = 0; i < 4; i++) {
                int nx = x + dir[i];
                int ny = y + dir[i + 1];
                if (nx < 0 || nx >= n || ny < 0 || ny >= m || maze[nx][ny] == '#') continue;
                if (dist[nx][ny] == -1) {
                    dist[nx][ny] = dist[x][y] + 1;
                    queue.offer(new Point(nx, ny));
                }
            }
        }
        return dist[to.x][to.y];
    }

}
class Point {
    int x, y;

    public Point() {
    }

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值