推荐模型构建流程
Data->Feature->ML Algorithm->Prediction Output
- What data to use?
- 显性数据
- Rating
- Comments
- 隐形数据
- Order history/return history
- Cart events
- Page views
- Click-thru
- Search log
- What feature to use?
- 一个给定的商品,可能被拥有类似品位或需求的用户购买
- 使用用户行为数据描述商品,将所有的用户行为合并在一起,形成一个user-item矩阵
- Which Algorithm?★
- Prediction Output
Cross-sell&Up-sell Recommendation
推荐算法概述
- 基于内容过滤
- 从信息检索和文本检索发展而来
- 基于商品描述及用户喜好描述,为用户推荐商品
- 弊端:
- 需要了解商品内容
- 需要人工或自动标注信息
- 商品内容不能反映所有特点
- 冷启动问题
- 需要花时间学习哪些内容或feature对用户而言是更重要的
- 如果用户兴趣点改变了呢
- Lack of serendipity
- 协同过滤
- 基于用户行为为用户推荐感兴趣的商品
- 行为可以是过往的交易行为和商品评分,这种方式不需要显性的属性信息
- 混合推荐
- 对比
基于协同过滤的推荐算法
- 协同过滤算法
- 基于用户行为的推荐
- 行为可以是过往的交易行为和商品评分,这种方式不需要显性的属性信息
- 协同过滤分类
- 最近邻(neighborhood )方法
- 借助商品的关系或者用户的关系
- 基于模型的方法
- 用隐含变量刻画商品
最近邻方法
- 最邻近方法
- 基于假设 : “跟你喜好相似的人喜欢的东西你也很有可能喜欢” 或“跟你喜欢的物品类似的物品你也很有可能喜欢 ”
- 分类
- User-based 方法
- 基于user的协同过滤,通过不同用户对item的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐
- Item-based方法
- 基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐
- User-based 方法
User-based
- 查找用户相似度
- 如何预测用户1对于商品4