【大数据技术与推荐系统(6)】推荐算法及开发环境配置

本文详细介绍了推荐模型的构建流程,重点讲解了协同过滤推荐算法,包括基于用户和物品的协同过滤实现,以及相似度计算方法。同时讨论了推荐系统的冷启动问题及其解决方案,并提到了推荐系统实践中的开发环境配置。
摘要由CSDN通过智能技术生成

推荐模型构建流程

Data->Feature->ML Algorithm->Prediction Output

  1. What data to use?
  • 显性数据
    • Rating
    • Comments
  • 隐形数据
    • Order history/return history
    • Cart events
    • Page views
    • Click-thru
    • Search log
  1. What feature to use?
  • 一个给定的商品,可能被拥有类似品位或需求的用户购买
  • 使用用户行为数据描述商品,将所有的用户行为合并在一起,形成一个user-item矩阵
    在这里插入图片描述
  1. Which Algorithm?★
  2. Prediction Output
    Cross-sell&Up-sell Recommendation

推荐算法概述

  • 基于内容过滤
    • 从信息检索和文本检索发展而来
    • 基于商品描述及用户喜好描述,为用户推荐商品
    • 弊端:
    • 需要了解商品内容
      • 需要人工或自动标注信息
      • 商品内容不能反映所有特点
    • 冷启动问题
      • 需要花时间学习哪些内容或feature对用户而言是更重要的
      • 如果用户兴趣点改变了呢
    • Lack of serendipity
      在这里插入图片描述
  • 协同过滤
    • 基于用户行为为用户推荐感兴趣的商品
    • 行为可以是过往的交易行为和商品评分,这种方式不需要显性的属性信息
  • 混合推荐
  • 对比
    在这里插入图片描述

基于协同过滤的推荐算法

  • 协同过滤算法
    • 基于用户行为的推荐
    • 行为可以是过往的交易行为和商品评分,这种方式不需要显性的属性信息
  • 协同过滤分类
    • 最近邻(neighborhood )方法
    • 借助商品的关系或者用户的关系
  • 基于模型的方法
    • 用隐含变量刻画商品

最近邻方法

  • 最邻近方法
    • 基于假设 : “跟你喜好相似的人喜欢的东西你也很有可能喜欢” 或“跟你喜欢的物品类似的物品你也很有可能喜欢 ”
  • 分类
    • User-based 方法
      • 基于user的协同过滤,通过不同用户对item的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐
    • Item-based方法
      • 基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐

User-based

  • 查找用户相似度
  1. 如何预测用户1对于商品4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值