欧拉法、预估校正法(改进的欧拉法)与四阶龙格库塔法求解常微分方程的数值解C++程序

以y'=x+y,0<x<1,y(0)=1为例,取步长h=0.1,已知精确值为y=-x-1+2e^x,用来进行精度比较。

#include<stdio.h>
using namespace std;
double cor[10000];
double f(double x,double y)//改写函数
{
    return x+y;
}
double correctf(double x)//精确解函数
{
    return -x-1+2*exp(x);
}
void Euler(double h,double l,double r,double *a,double *b,double tol)//欧拉法
{
    double sum=0;
    for(int i=1; i<=tol; i++)
    {
        b[i]=b[i-1]+h*f(a[i-1],b[i-1]);
        sum+=fabs(b[i]-cor[i])/cor[i];
    }
    for(int i=1; i<=tol; i++)
        printf("当x=%lf时,近似解为:%lf,准确解为:%lf\n",a[i],b[i],cor[i]);
    printf("精度为:%lf\n\n",sum/tol);
}
void improvedEuler(double h,double l,double r,double *a,double *b,double tol)//改进的欧拉法
{
    double b1,sum=0;
    for(int i=1; i<=tol; i++)
    {
        b1=b[i-1]+h*f(a[i-1],b[i-1]);
        b[i]=b[i-1]+h/2*(f(a[i-1],b[i-1])+f(a[i],b1));
    }
    for(int i=1; i<=tol; i++)
        printf("当x=%lf时,近似解为:%lf,准确解为:%lf\n",a[i],b[i],cor[i]);
    printf("精度为:%lf\n\n",sum/tol);
}
void RungeKutta(double h,double l,double r,double *a,double *b,double tol)//四阶龙格库塔法
{
    double k1,k2,k3,k4,sum=0;
    for(int i=1; i<=tol; i++)
    {
        k1=f(a[i-1],b[i-1]);
        k2=f(a[i-1]+h/2,b[i-1]+h/2*k1);
        k3=f(a[i-1]+h/2,b[i-1]+h/2*k2);
        k4=f(a[i-1]+h,b[i-1]+h*k3);
        b[i]=b[i-1]+h/6*(k1+2*k2+2*k3+k4);
    }
    for(int i=1; i<=tol; i++)
        printf("当x=%lf时,近似解为:%lf,准确解为:%lf\n",a[i],b[i],cor[i]);
    printf("精度为:%lf\n\n",sum/tol);
}
int main()
{
    double h,a[10000],b[10000],l,r;
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    memset(cor,0,sizeof(cor));
    printf("请输入步长:");
    scanf("%lf",&h);
    printf("请输入区间下限:");
    scanf("%lf",&l);
    printf("请输入区间上限:");
    scanf("%lf",&r);
    printf("请赋予初始值:");
    scanf("%lf",&b[0]);
    double tol=(r-l)/h;
    for(int i=0; i<=tol; i++)
        a[i]=l+i*h;
    for(int i=1; i<=tol; i++)
        cor[i]=correctf(a[i]);
    printf("以下为欧拉法求解结果:\n");
    Euler(h,l,r,a,b,tol);
    printf("以下为改进的欧拉法求解结果:\n");
    improvedEuler(h,l,r,a,b,tol);
    printf("以下为四阶龙格库塔法求解结果:\n");
    RungeKutta(h,l,r,a,b,tol);
    return 0;
}

运行得到:



  • 7
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 欧拉法是一种最简单的数值,它是通过对微分方程积分一次求出离散点的值,来近似求解微分方程改进欧拉法是在欧拉法的基础上,把求解函数的右端的函数由原来的一次函数改进为高函数,从而改善了欧拉法的精度。-是一种微分方程,它采用多项式拟合的方求解微分方程,能够求出比欧拉法更高精度的。拉朗日插值是一种数值,它是通过在离散点上构造拉朗日插值多项式,用这个多项式代替原函数,从而求解微分方程。 ### 回答2: 微分方程是描述自然现象中随时间变化的数学方程。数值是用数值求解微分方程的逼近。下面将详细介绍四种用的数值欧拉法改进欧拉法-,拉朗日插值。 1. 欧拉法(Euler Method)是最简单的显式数值之一。欧拉法基于微分方程中的一泰勒展开式,通过计算函数在当前点上的斜率,来逼近下一点的函数值。具体步骤为:首先给定初值,然后根据微分方程计算斜率,以此斜率进行一步近似,不断迭代直到求得所需点的函数值。 2. 改进欧拉法(Improved Euler Method)是对欧拉法改进。在改进欧拉法中,我们在一个步长内进行两次斜率计算,然后对这两个斜率的平均值进行一步近似。通过这样的平均值,改进欧拉法可以更准确地逼近下一点的函数值。 3. -(Runge-Kutta Method)是一类非流行的显式数值。RK4方是其中最用的一种方。在-中,我们根据微分方程中的高泰勒展开式来计算斜率。RK4方的基本步骤为:首先计算中间点上的斜率,然后根据这个斜率计算出一个斜率的平均值,然后将这个平均值用于计算下一点的函数值。 4. 拉朗日插值(Lagrange Interpolation)是对数值的另一种方。它利用已知的数据点来构造一个多项式函数,然后使用该多项式函数来逼近目标函数的值。拉朗日插值的基本思想是通过已知数据点在目标区间上定义一个插值多项式,然后利用这个多项式来求目标函数在其他点上的近似值。 以上是微分方程数值中的欧拉法改进欧拉法-,拉朗日插值的详细介绍。每种方都有其适用范围和优缺点,根据实际问题的需求选择合适的方来进行数值求解。 ### 回答3: 欧拉法微分方程数值中最简单的一种方。它通过将微分方程转化为差分方程,基于初始条件依次计算出下一个点的值。具体方是将微分方程在当前点的切线作为下一个点的近似值,即通过迭代来逼近真实欧拉法的计算简单,但精度较低,容易累积误差。 改进欧拉法是对欧拉法的一种改进。它通过计算下一个点的切线斜率的平均值,来更准确地估计下一个点的值。改进欧拉法通过减小误差项的贡献,提高了数值的精度。相比于欧拉法改进欧拉法的计算复杂度略高,但精度也有所提升。 -是一种用的高精度数值,主要包括二和四。它通过计算多个切线斜率的加权平均值,来估计下一个点的值。具体来说,四-计算过程中需要进行四次迭代,每一步都通过加权平均值来更新近似-相对于欧拉法改进欧拉法具有更高的精度和更少的误差。但同时,也需要更多的计算量。 拉朗日插值数值微分方程用的一种插值方。它通过连接已知的若干个点,构造一个多项式函数,利用这个多项式函数来估计未知点的值。拉朗日插值基于拉朗日插值多项式的构造原理,不断减小误差,可以较好地逼近真实。但需要注意的是,拉朗日插值的误差随插值节点的数量增加而增加,且容易在边界处产生振荡现象。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值