Leetcode 2151.基于陈述统计最多好人数(二进制枚举)

Leetcode 2151.基于陈述统计最多好人数(二进制枚举)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-APkcB1Yo-1643128018385)(C:\Users\Xilyfe\AppData\Roaming\Typora\typora-user-images\image-20220125231122667.png)]

二进制枚举

这次题解里我发现了一种二进制枚举的方法。

简单来说类似本题题意,假如有n种不同的状态,就可以用一个二进制数表示,每一位的0和1表示不同状态。以本题为例,二进制数1101可以表示,第1、2、4位是好人,第2位是坏人。所以,我们可以枚举从 [ 0 , 2 n ) [0,2^{n}) [0,2n) 的数字,就代表每一种状态。

模板

for(int i=0; i<(1<<n); i++){//二进制枚举//枚举每一个状态
    for(int j=0; j<n; j++){//枚举该状态下二进制的每一位数值
       if(i&(1<<j))//当前状态的第i位  是否为1(存在
            printf(" %d ",a[j]);
    }
}

题解

  1. 题目中坏人说的有可能真有可能假,所以对题目没有贡献不用考虑。
  2. 判断某种状态是否矛盾,只要判断一下是否是以下两种情况①好人说x是坏人,并且x是好人 ②好人说x是好人,x是坏人。
#include<bits/stdc++.h>
#define io_opt ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define INF 0x3f3f3f3f
#define rg register
using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
const int N = 1e6 + 10;


class Solution {
   public:
    int maximumGood(vector<vector<int>>& s) {
        int n = s.size();
        int mask = (1 << n);
        int ans = 0;
        for (int i = 0; i < mask; i++) {  // 考虑 0 到 2^n - 1 种情况中的值
            bool flag = true;
            int cnt = 0;
            for (int j = 0; j < n; j++) { // 对于每一个值考虑每一位具体是 0 还是 1 
                if ((i >> j) & 1) {       // 如果 i 的第 j 位等于 1, 就说明这种 mask 中的这一位存在
                                          // j 是好人的情况下,根据 statements[j][k] 计算其他人是好人还是坏人
                    for (int k = 0; k < s[j].size(); k++) {
                        if (s[j][k] == 2) continue;
                        if ((s[j][k] == 1 && ((i >> k) & 1) == 0) ||
                            (s[j][k] == 0 && ((i >> k) & 1) == 1)) {
                                          // 如果出现了陈述的状态和当前 mask 表示的状态不同的情况
                            flag = false;
                            break;        // 就可以快进到下一种情况
                        }
                    }
                    cnt++;
                }
            }
            if (flag) {                   // 如果存在一种 mask 正确的遍历完成的话
                ans = max(ans, cnt);
            }
        }
        return ans;
    }
};

int main(){
    vector<vector<int>> vtr;
    Solution S;
    S.maximumGood(vtr);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值