交叉验证法

交叉验证法是评估模型预测能力的有效方法,通过将数据分为训练集和测试集,减少过拟合并充分利用数据。主要方法包括holdout和k-fold交叉验证。k-fold交叉验证通过平均k次不同分组的测试结果来提高稳定性,通常k取10。在数据量大小不同的情况下,可以选择合适的k值进行模型训练。
摘要由CSDN通过智能技术生成

 

什么是交叉验证法?

基本思想就是将原始数据(dataset)进行分组,一部分作为训练集来训练模型,另一部分作为测试集来评价模型。


为什么用交叉验证法?

1、交叉验证用于评估模型的预测能力。尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。

2、还可以从有限的数据中获取尽可能多的有效信息。


主要有哪些方法?

列举两个:

1、holdout cross validation

在机器学习任务中,拿到数据后,我们首先将原始数据集分为三部分:训练集、验证集和测试集。

训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力

这个方法操作简单,只需要随机把原始数据分为3组即可。

不过只做一次分割,它对训练集、验证集和测试集的样本数比例,还有分割后数据的分布是否和原始数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值