【视线追踪】视线追踪的性能评估框架 及 基础知识

本文提出了一种标准化的视线追踪性能评估框架,旨在解决不同平台间操作环境、性能指标不一致、误差源考虑不全以及术语使用不规范等问题。框架包括头部姿势、用户距离和视角、显示器尺寸和分辨率、相机分辨率、照明度和遮挡问题等多个测试项,以量化系统性能。同时,文章对视线追踪领域的基础知识进行了综述,包括基本概念、误差源、设备构成和校准方法等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

本博客核心参考论文:

A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

A. Kar and P. Corcoran, Towards the development of a standardized performance evaluation framework for eye gaze estimation systems in consumer platforms, in Proc. IEEE Int. Conf. Syst., Man, Cybern., Budapest, Hungary, Oct. 2016, pp. 002061 002066.

目前,视线追踪技术有以下应用平台:

  • 电脑:主要用来人机交互——计算机通信和文本输入(比鼠标更有效率,而且更适合残障人士使用)
  • 电视:选择和导航菜单和切换频道
  • 头戴设备:应用于用户注意、认知研究、精神分析;或者是VR的局部渲染,如果能够通过头盔内置摄像头估计人的视线方向,则可以对场景做局部精细渲染,即仅对人视线范围内的场景精细渲染,从而大大降低硬件成本。
  • 汽车装备:检测驾驶员是否疲劳驾驶以及注意力是否集中。
  • 手持设备:亮度、音量调节等人机交互功能。

在这些不同平台中,由于硬件、生物差异等因素各不相同,导致不同平台间的变量很多,差异很大,导致同样的算法在不同平台中表现会不一样。

同时,还因为在当今的研究文献中:

  1. 不同文献衡量视线追踪性能的指标也不一样,导致不同研究之间很难直接进行对比;
  2. 在进行视线追踪研究时,所考虑的误差不够全面,所查阅的文献中,只有少数几篇论文研究了操作条件对系统性能的影响;
  3. 术语的使用也没有一个统一化的规范。

这一切都不利于该领域的后续发展。所以,为了:

  1. 研究各种误差源对系统性能的影响;
  2. 以统一误差格式,来定量报告系统性能;
  3. 确定每个平台的精度性能瓶颈。

本文:

  1. 提出了一个标准化的性能衡量框架。
  2. 为视线评估技术做一个综述性的介绍,包括系统、算法、以及有哪些误差因素会影响精度。

二、为什么要开发性能评估框架?

1. 应用平台之间操作环境不一样

五个平台中视线追踪技术的使用条件完全不同。因此,根据平台的不同,视线追踪器也可能产生显著不同的结果。

在这里插入图片描述

表4给出了五个视线追踪平台的硬件配置和使用条件,包括用户姿势和视角、屏幕尺寸、用户与屏幕摄像机设置之间的典型距离。

在误差方面(使用度数误差):

  • 通常情况下,头戴式系统误差低于一度,优于其他平台。
  • 对于桌面系统,其误差从0.5度到2度不等
  • 对于汽车和手持设备等更具动态性的平台,其误差在2度以上。

2. 文献中性能评价指标不一样

通常来讲,我们使用以下指标来衡量视线追踪系统的性能:

  1. 角度分辨率(以度为单位)
  2. 视线识别率(以百分比为单位)
  3. 视线和目标位置之间的最小像素位移/距离。

但是这些指标之间没有任何关联。在参考文献中,不同的文章使用了不同的指标,例如百分比识别率或错误率。这就导致了,大多数视线估计方法之间无法相互比较。

图10显示了不同平台不同格式精度的论文数量。

在这里插入图片描述
从表5可知,视线估计这项研究中,目前没有一个用来评价性能指标的标准。如表所示,在来自电脑/电视应用平台的总共69篇论文中:

  • 44篇论文使用了以度为单位的追踪精度
  • 16篇论文使用了视线识别率
  • 9篇论文使用了混合单位。

在这里插入图片描述

而在所有平台的182项研究工作中:

  • 95篇论文报告了以度为单位的视线准确度得分
  • 41篇论文报告了百分比(正确检测率)
  • 46篇论文使用了其他单位。

另外,桌面和头戴式平台常使用度作为单位,而汽车或手持设备更倾向使用其他度量衡。这样会导致大量研究得出的性能既不能比较,也不能进行定量解释。

3. 有很多误差源没有被考虑到

视线追踪系统会被很多因素影响,这些因素,我们称之为误差源。

  • 在台式机平台上,误差主要来源于头部移动。
  • 在头戴式设备中,误差源于追踪器未校准、追踪器延迟…
  • 汽车系统,头部移动、可变照明、阴影造成的遮挡或用户戴眼镜…
  • 在手持设备中,用户相对于设备的位置发生变化、头部姿势、手抖动、可变照明和Midas-touch。

[31] B. B. Velichkovsky, M. A. Rumyantsev, and M. A. Morozov, New solution to the midas touch problem: Identification of visual commands via extraction of focal fixations, Procedia Comput. Sci., vol. 39, pp. 75 82, Dec. 2014.

在视线估计中,有些误差源已经进行了研究:

  • 头部姿势的变化
  • 用户距离和视角。

但是也有很多误差源没有考虑:

  • 如追踪视线的屏幕的尺寸和像素分辨率
  • 平台移动和抖动
  • 照明变化
  • 相机质量
  • 人眼遮挡等

众多文献中:

  • 基于桌面系统的69篇论文中,只有35篇报告了头部姿势变化的影响
  • 基于头戴式系统的57篇论文中,只有16篇报告了头部姿势变化的影响
  • 台式和头戴式平台中都只有2篇论文报告了视线追踪装置的显示属性的效果。
  • 4篇论文在台式机上报道了照明变化的影响,
  • 1篇在头戴式系统上报道了照明变
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值