一、前言
本博客核心参考论文:
A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms
A. Kar and P. Corcoran, Towards the development of a standardized performance evaluation framework for eye gaze estimation systems in consumer platforms, in Proc. IEEE Int. Conf. Syst., Man, Cybern., Budapest, Hungary, Oct. 2016, pp. 002061 002066.
目前,视线追踪技术有以下应用平台:
- 电脑:主要用来人机交互——计算机通信和文本输入(比鼠标更有效率,而且更适合残障人士使用)
- 电视:选择和导航菜单和切换频道
- 头戴设备:应用于用户注意、认知研究、精神分析;或者是VR的局部渲染,如果能够通过头盔内置摄像头估计人的视线方向,则可以对场景做局部精细渲染,即仅对人视线范围内的场景精细渲染,从而大大降低硬件成本。
- 汽车装备:检测驾驶员是否疲劳驾驶以及注意力是否集中。
- 手持设备:亮度、音量调节等人机交互功能。
在这些不同平台中,由于硬件、生物差异等因素各不相同,导致不同平台间的变量很多,差异很大,导致同样的算法在不同平台中表现会不一样。
同时,还因为在当今的研究文献中:
- 不同文献衡量视线追踪性能的指标也不一样,导致不同研究之间很难直接进行对比;
- 在进行视线追踪研究时,所考虑的误差不够全面,所查阅的文献中,只有少数几篇论文研究了操作条件对系统性能的影响;
- 术语的使用也没有一个统一化的规范。
这一切都不利于该领域的后续发展。所以,为了:
- 研究各种误差源对系统性能的影响;
- 以统一误差格式,来定量报告系统性能;
- 确定每个平台的精度性能瓶颈。
本文:
- 提出了一个标准化的性能衡量框架。
- 为视线评估技术做一个综述性的介绍,包括系统、算法、以及有哪些误差因素会影响精度。
二、为什么要开发性能评估框架?
1. 应用平台之间操作环境不一样
五个平台中视线追踪技术的使用条件完全不同。因此,根据平台的不同,视线追踪器也可能产生显著不同的结果。
表4给出了五个视线追踪平台的硬件配置和使用条件,包括用户姿势和视角、屏幕尺寸、用户与屏幕摄像机设置之间的典型距离。
在误差方面(使用度数误差):
- 通常情况下,头戴式系统误差低于一度,优于其他平台。
- 对于桌面系统,其误差从0.5度到2度不等
- 对于汽车和手持设备等更具动态性的平台,其误差在2度以上。
2. 文献中性能评价指标不一样
通常来讲,我们使用以下指标来衡量视线追踪系统的性能:
- 角度分辨率(以度为单位)
- 视线识别率(以百分比为单位)
- 视线和目标位置之间的最小像素位移/距离。
但是这些指标之间没有任何关联。在参考文献中,不同的文章使用了不同的指标,例如百分比识别率或错误率。这就导致了,大多数视线估计方法之间无法相互比较。
图10显示了不同平台不同格式精度的论文数量。
从表5可知,视线估计这项研究中,目前没有一个用来评价性能指标的标准。如表所示,在来自电脑/电视应用平台的总共69篇论文中:
- 44篇论文使用了以度为单位的追踪精度
- 16篇论文使用了视线识别率
- 9篇论文使用了混合单位。
而在所有平台的182项研究工作中:
- 95篇论文报告了以度为单位的视线准确度得分
- 41篇论文报告了百分比(正确检测率)
- 46篇论文使用了其他单位。
另外,桌面和头戴式平台常使用度作为单位,而汽车或手持设备更倾向使用其他度量衡。这样会导致大量研究得出的性能既不能比较,也不能进行定量解释。
3. 有很多误差源没有被考虑到
视线追踪系统会被很多因素影响,这些因素,我们称之为误差源。
- 在台式机平台上,误差主要来源于头部移动。
- 在头戴式设备中,误差源于追踪器未校准、追踪器延迟…
- 汽车系统,头部移动、可变照明、阴影造成的遮挡或用户戴眼镜…
- 在手持设备中,用户相对于设备的位置发生变化、头部姿势、手抖动、可变照明和Midas-touch。
[31] B. B. Velichkovsky, M. A. Rumyantsev, and M. A. Morozov, New solution to the midas touch problem: Identification of visual commands via extraction of focal fixations, Procedia Comput. Sci., vol. 39, pp. 75 82, Dec. 2014.
在视线估计中,有些误差源已经进行了研究:
- 头部姿势的变化
- 用户距离和视角。
但是也有很多误差源没有考虑:
- 如追踪视线的屏幕的尺寸和像素分辨率
- 平台移动和抖动
- 照明变化
- 相机质量
- 人眼遮挡等
众多文献中:
- 基于桌面系统的69篇论文中,只有35篇报告了头部姿势变化的影响
- 基于头戴式系统的57篇论文中,只有16篇报告了头部姿势变化的影响
- 台式和头戴式平台中都只有2篇论文报告了视线追踪装置的显示属性的效果。
- 4篇论文在台式机上报道了照明变化的影响,
- 1篇在头戴式系统上报道了照明变