OpenCV计算机视觉实战(18)——视频处理详解
0. 前言
在日益增多的视频数据洪流中,如何高效地读取、处理、分析并提取出有价值的“内容精华”,已成为多媒体、安防与自动化领域亟待解决的核心问题。本文将结合 Python + OpenCV,深入剖析从基本的视频 I/O 到智能运动检测,再到多重特征融合的摘要生成的完整解决方案。
1. 视频读写与帧处理
从磁盘或摄像头读取视频,逐帧进行图像处理(如缩放、灰度转换、加水印等),并将处理后的视频写入文件。
1.1 应用场景
- 实时监控录像存档:在工业或安防场景中,需要对摄像头画面做实时水印、叠加时间戳并压缩存档
- 批量转码与分辨率自适应:对不同终端(手机、平板、电视)批量生成多种分辨率版本
- 并发处理:利用多线程或队列,将帧读取、处理、写出分成流水线加速
1.2 实现过程
- 打开视频源:
cv2.VideoCapture支持文件路径或摄像头索引 - 获取视频信息:帧率 (
fps)、帧宽和帧高 - 循环读取每一帧:在
while cap.isOpened()中逐帧cap.read() - 对单帧做处理:本节中将每帧缩放为原来一半并叠加时间戳
- 写出视频:使用
cv2.VideoWrit
订阅专栏 解锁全文
7447





