以数据为关键因素推动产业转型升级,不仅成为行业在宏观层面的共识,而且在微观层面上也给企业带来了实实在在的利益。然而,工业大数据的发展也面临着数据资源不足、数据管理滞后、孤岛普遍存在、应用深度不足等四大挑战。因此,有必要巩固企业层面的数据基础,抓住技术创新的机遇,在行业层面建立数据互操作和流通的标准和规则。
工业大数据发展面临四方面挑战
挑战1:工业数据资源不丰富
理论上,工业领域的数据应该是非常丰富的,麦肯锡2009年的报告显示,美国的离散制造业是所有行业中数据储量最大的。但实际上,有价值的数据非常稀缺,原因是在工业领域,有分析利用价值的机器数据往往需要包含故障情形下的“坏”样本。但很多工业系统的数据可靠性较高,观测到故障并且已经标记的有效样本更是难能可贵。还有一些工业场景,只有在极短的时间内采集测量数据(如每秒上百万个测点),才能捕获机器设备的细微状况,这就要求时序数据库和流处理平台等专用的新一代数据存储软件提供支撑。
很多工业企业面临“数到用时方恨少”的尴尬。根据中国信息通信研究院和工业互联网产业联盟2018年年底对国内74家工业企业的调研,我国工业企业的数据资源存量普遍不大,66%的企业数据总量都在20TB以下,还不到一个省级电信运营商日增数据量的1/10。数据资源不丰富,与我国工业互联网发展还处于起步阶段有关。企业数字化、网络化程度普遍较低,数据资源的积累尚需时日。而目前工业系统协议“七国八制”现象非常突出,很多软件系统的接口不开放,也增加了数据采集的技术难度。
挑战2:工业数据资产管理滞后
计算机科学家警钟长鸣:警惕“垃圾进&