工业大数据的发展面临哪四大挑战

工业大数据在推动产业升级中发挥关键作用,但面临数据资源不足、数据管理滞后、孤岛现象及应用深度不足的挑战。数据资源的匮乏、数据资产管理的滞后、企业内外部数据孤岛以及数据应用的不深入限制了其潜力。解决这些问题需要强化数据基础,创新技术,建立数据互操作标准,并深化数据应用层次。
摘要由CSDN通过智能技术生成

  以数据为关键因素推动产业转型升级,不仅成为行业在宏观层面的共识,而且在微观层面上也给企业带来了实实在在的利益。然而,工业大数据的发展也面临着数据资源不足、数据管理滞后、孤岛普遍存在、应用深度不足等四大挑战。因此,有必要巩固企业层面的数据基础,抓住技术创新的机遇,在行业层面建立数据互操作和流通的标准和规则。

 

  工业大数据发展面临四方面挑战

 

  挑战1:工业数据资源不丰富

 

  理论上,工业领域的数据应该是非常丰富的,麦肯锡2009年的报告显示,美国的离散制造业是所有行业中数据储量最大的。但实际上,有价值的数据非常稀缺,原因是在工业领域,有分析利用价值的机器数据往往需要包含故障情形下的“坏”样本。但很多工业系统的数据可靠性较高,观测到故障并且已经标记的有效样本更是难能可贵。还有一些工业场景,只有在极短的时间内采集测量数据(如每秒上百万个测点),才能捕获机器设备的细微状况,这就要求时序数据库和流处理平台等专用的新一代数据存储软件提供支撑。

 

  很多工业企业面临“数到用时方恨少”的尴尬。根据中国信息通信研究院和工业互联网产业联盟2018年年底对国内74家工业企业的调研,我国工业企业的数据资源存量普遍不大,66%的企业数据总量都在20TB以下,还不到一个省级电信运营商日增数据量的1/10。数据资源不丰富,与我国工业互联网发展还处于起步阶段有关。企业数字化、网络化程度普遍较低,数据资源的积累尚需时日。而目前工业系统协议“七国八制”现象非常突出,很多软件系统的接口不开放,也增加了数据采集的技术难度。

 

  挑战2:工业数据资产管理滞后

 

  计算机科学家警钟长鸣:警惕“垃圾进&

[入门数据分析的第一堂课]这是一门为数据分析小白量身打造的课程,你从网络或者公众号收集到很多关于数据分析的知识,但是它们零散不成体系,所以第一堂课首要目标是为你介绍:Ø  什么是数据分析-知其然才知其所以然Ø  为什么要学数据分析-有目标才有动力Ø  数据分析的学习路线-有方向走得更快Ø  数据分析的模型-分析之道,快速形成分析思路Ø  应用案例及场景-分析之术,掌握分析方法[哪些同学适合学习这门课程]想要转行做数据分析师的,零基础亦可工作中需要数据分析技能的,例如运营、产品等对数据分析感兴趣,想要更多了解的[你的收获]n  会为你介绍数据分析的基本情况,为你展现数据分析的全貌。让你清楚知道自己该如何在数据分析地图上行走n  会为你介绍数据分析的分析方法和模型。这部分是讲数据分析的道,只有学会底层逻辑,能够在面对问题时有自己的想法,才能够下一步采取行动n  会为你介绍数据分析的数据处理和常用分析方法。这篇是讲数据分析的术,先有道,后而用术来实现你的想法,得出最终的结论。n  会为你介绍数据分析的应用。学到这里,你对数据分析已经有了初步的认识,并通过一些案例为你展现真实的应用。[专享增值服务]1:一对一答疑         关于课程问题可以通过微信直接询问老师,获得老师的一对一答疑2:转行问题解答         在转行的过程中的相关问题都可以询问老师,可获得一对一咨询机会3:打包资料分享         15本数据分析相关的电子书,一次获得终身学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值