数据分析的流程也比较简单,其主要包括六个环节:明确分析目的、数据获取、数据处理、数据分析、数据可视化、结论与建议。
那么如何对大数据进行分析?
一、明确数据分析的目的
做事都是有目的的,数据分析也是。在大数据分析之前,我们首先要清楚为什么要进行数据分析?
三种常见的数据分析目标:
波动解释型:销售量突然下降,新用户留存率突然下降……此时,会需要数据分析师解释为什么会出现这样的波动,分析较为聚焦,主要是找出波动的原因。
数据复盘型:类似月报、季报,比如某个app的某个功能上线一段时间后,数据分析师通常需要复盘一下这个新功能的表现情况,看看是否存在什么问题。
专题探索型:针对某一主题的专题探索,如新用户流失、收益分析等等。
二、数据获取
在明确数据分析的目标后,就要根据目标获取所需的数据,数据获取主要分为三类:
(1)通过基于前端页面的数据采集工具,如亿信ABI的数据采集功能;
(2)在产品设计过程中,通过数据埋点的方式,需要数据时可以简单地提出数据,这种方法的前提是未来的数据采集在产品规划阶段就已经提前准备好了;
(3)如果前期没有进行数据埋点,数据采集工具也无法获取数据时,就要找研发团队通过后台脚本或技术研发的方式获取数据。
三、数据处理
数据处理阶