大数据分析的流程是怎样的

数据分析流程包括明确目的、数据获取、数据处理、数据分析、数据可视化和结论建议。常见目标有波动解释、数据复盘和专题探索。数据获取涉及前端采集、数据埋点和研发支持。数据处理涵盖数据清洗、补录和整合。数据分析方法包括异常分析、关联关系、分类分层和预测。数据可视化借助BI工具如亿信ABI,使结果更易理解。
摘要由CSDN通过智能技术生成

  数据分析的流程也比较简单,其主要包括六个环节:明确分析目的、数据获取、数据处理、数据分析、数据可视化、结论与建议。

 

  那么如何对大数据进行分析?

 

  一、明确数据分析的目的

 

  做事都是有目的的,数据分析也是。在大数据分析之前,我们首先要清楚为什么要进行数据分析?

 

  三种常见的数据分析目标:

 

  波动解释型:销售量突然下降,新用户留存率突然下降……此时,会需要数据分析师解释为什么会出现这样的波动,分析较为聚焦,主要是找出波动的原因。

 

  数据复盘型:类似月报、季报,比如某个app的某个功能上线一段时间后,数据分析师通常需要复盘一下这个新功能的表现情况,看看是否存在什么问题。

 

  专题探索型:针对某一主题的专题探索,如新用户流失、收益分析等等。

 

  二、数据获取

 

  在明确数据分析的目标后,就要根据目标获取所需的数据,数据获取主要分为三类:

 

  (1)通过基于前端页面的数据采集工具,如亿信ABI的数据采集功能;

 

  (2)在产品设计过程中,通过数据埋点的方式,需要数据时可以简单地提出数据,这种方法的前提是未来的数据采集在产品规划阶段就已经提前准备好了;

 

  (3)如果前期没有进行数据埋点,数据采集工具也无法获取数据时,就要找研发团队通过后台脚本或技术研发的方式获取数据。

 

  三、数据处理

 

  数据处理阶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值