第3章:欧姆定律
3.1 电压、电流与电阻的关系
欧姆定律指出:电流与电压成正比,与电阻成反比。即 I = V R I=\frac{V}{R} I=RV
3.1.1 电压与电流之间的线性关系
数学上,线性指的是变量之间的关系在图形上是一条直线。线性方程所对应的直线可以通过或不通过原点。当直线通过原点时,变量间成正比关系,方程的形式是 y = k x y=kx y=kx ,换到欧姆定律里面就是:电阻R是常数。

【例3-1】在图3-3所示电路中,请说明如果电压增加到当前值的3倍,则电流也变为当前值的3倍。

【解】根据欧姆定律,当前电流为 I = V R = 10 V 4.7 k Ω = 2.13 m A I=\frac{V}{R}=\frac{10 \rm V}{4.7{\rm kΩ}}=2.13\rm mA I=RV=4.7kΩ10V=2.13mA
当电压增加到当前值的三倍时,有电流 I 1 = V 1 R = 30 V 4.7 k Ω = 6.38 m A I_{1}=\frac{V_{1}}{R}=\frac{30 \rm V}{4.7{\rm kΩ}}=6.38\rm mA I1=RV1=4.7kΩ30V=6.38mA
【同步练习】如果图3-3中的电压变为4倍,那么电流会变为4倍吗?
【答】会
【例3-2】假设在一个工作电压为25V的电阻电路中测量电流,电流表读数为50mA,后来发现电流下降到40mA。假设电阻没有改变,可以断定电压已经改变。问新的电压是多少?
【解】根据欧姆定律,电阻是不变的,不需要根据电阻值来计算新电压,电流变化的百分比即为电压变化的百分比,所以新电压为 V 1 = V × I 1 I = V × 40 m A 50 m A = V × 80 % = 25 V × 80 % = 20 V V_{1}=V\times \frac{I_{1}}{I}=V\times \frac{40\rm mA}{50\rm mA}=V\times 80\%=25{\rm V}\times 80\%=20\rm V V1=V×II1=V×50mA40mA=V×80%=25V×80%=20V
3.1.2 电流与电阻的反比例关系
欧姆定律指出,电流与电阻成反比,即I=V/R。当电阻减小时,电流上升;当电阻增加时,电流下降。例如,如果电源电压保持恒定,电阻减半,电流加倍;电阻加倍,电流减半。
取一个恒定的电压值(例如10V),然后计算图3-5a中在10~1000范围内几个电压值下的电流。计算结果如图3-5b所示。I与R的关系如图3-5c所示。当两个变量成反比例时,这两个变量的乘积是常数,方程的形式是 x y = k xy=k xy=k。

课后习题
(1)欧姆定律描述了3个电气量之间的关系,这些量是什么?
【答】电流、电压和电阻。
(2)写出计算电流的欧姆定律公式。
【答】 I = V R I=\frac{V}{R} I=RV
(3)写出计算电压的欧姆定律公式。
【答】 V = I R V=IR V=IR
(4)写出计算电阻的欧姆定律公式。
【答】 R = V I R=\frac{V}{I} R=IV
(5)如果一个定值电阻上的电压增加了3倍,电流是增加还是减少,电流改变多少?
【答】在一个定值电阻上,电压增加3倍,电流也增加3倍。
(6)如果一个固定电阻上的电压减半,电流会改变多少?
【答】在一个定值电阻上,电压减半,电流也减半。
(7) 电阻上的电压固定,测得电流是1A。替换成2倍的电阻后,测量的电流是多少?
【答】电压固定时,电阻与电流成反比,电阻增加2倍,电流减为原来的 1 2 \frac{1}{2} 21,即电流为0.5A。
(8)在某电路上,电压加倍,并且电阻减半,那么电流是增加还是减少,如果电流发生改变,那么怎么改变?
【答】根据欧姆定律

本文介绍了欧姆定律,阐述了电流与电压成正比、与电阻成反比的关系。通过例子和习题展示了电压变化如何影响电流,以及电阻变化对电流的影响,证明了线性关系和反比例关系。同时,提到了在不同电阻和电压条件下电流的计算方法。
最低0.47元/天 解锁文章
2361

被折叠的 条评论
为什么被折叠?



