【数学分析笔记】第2章第4节收敛准则(5)

2. 数列极限

2.4 收敛准则

2.4.5 子列

{ x n } \{x_{n}\} {xn}是一个数列,取一列严格单调增加的正整数 n 1 < n 2 < n 3 < . . . < n k n_{1}<n_{2}<n_{3}<...<n_{k} n1<n2<n3<...<nk,则 x n 1 , x n 2 , x n 3 , . . . , x n k x_{n_{1}},x_{n_{2}},x_{n_{3}},...,x_{n_{k}} xn1,xn2,xn3,...,xnk称为数列 { x n } \{x_{n}\} {xn}的一个子列。记为 { x n k } \{x_{n_{k}}\} {xnk} k k k表示子列中的第 k k k项,恰好是 { x n } \{x_{n}\} {xn}中的第 n k n_{k} nk项, n k ≥ k , ∀ k n_{k}\ge k,\forall k nkk,k n j > n k , ∀ j > k n_{j}>n_{k},\forall j>k nj>nk,j>k
【例】 { x 2 k } : x 2 , x 4 , x 6 , x 8 , . . . \{x_{2k}\}:x_{2},x_{4},x_{6},x_{8},... {x2k}:x2,x4,x6,x8,...
【例】 { x 2 k } : x 2 , x 4 , x 8 , x 16 , . . . \{x_{2^{k}}\}:x_{2},x_{4},x_{8},x_{16},... {x2k}:x2,x4,x8,x16,...


【定理2.4.4】若 { x n } \{x_{n}\} {xn}收敛于 a a a,则它的任何一个子列 x n k x_{n_{k}} xnk也收敛于 a a a
【证】设 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_{n}=a nlimxn=a { x n k } \{x_{n_{k}}\} {xnk}是它的一个子列。
要证明 lim ⁡ k → ∞ x n k = a \lim\limits_{k\to\infty}x_{n_{k}}=a klimxnk=a
∀ ε > 0 \forall \varepsilon>0 ε>0,要找 K ∈ N + K\in\mathbb{N}^{+} KN+,使得 ∀ k > K : ∣ x n k − a ∣ < ε \forall k>K:|x_{n_{k}}-a|<\varepsilon k>K:xnka<ε
lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_{n}=a nlimxn=a可知 ∃ N , ∀ n > N : ∣ x n − a ∣ < ε \exists N,\forall n>N:|x_{n}-a|<\varepsilon N,n>N:xna<ε
K = N , ∀ k > K , n k ≥ k > K = N : ∣ x n k − a ∣ < ε K=N,\forall k>K,n_{k}\ge k>K=N:|x_{n_{k}}-a|<\varepsilon K=N,k>K,nkk>K=N:xnka<ε
所以 lim ⁡ k → ∞ x n k = a \lim\limits_{k\to\infty}x_{n_{k}}=a klimxnk=a
【注】定理2.4.4可以用来否定某个数列的收敛性。


【例2.4.11】证明数列 { sin ⁡ n π 4 } \{\sin\frac{n\pi}{4}\} {sin4}不收敛。
【证】取数列 { sin ⁡ n π 4 } \{\sin\frac{n\pi}{4}\} {sin4}的两个子列 n k ( 1 ) = 4 k , n k ( 2 ) = 8 k + 2 n_{k}^{(1)}=4k,n_{k}^{(2)}=8k+2 nk(1)=4k,nk(2)=8k+2
{ x n k ( 1 ) } = { sin ⁡ k π } = { 0 } \{x_{n_{k^{(1)}}}\}=\{\sin k\pi\}=\{0\} {xnk(1)}={sin}={0}
所以 lim ⁡ k → ∞ x n k ( 1 ) = 0 \lim\limits_{k\to\infty}x_{n_{k^{(1)}}}=0 klimxnk(1)=0
{ x n k ( 2 ) } = { sin ⁡ 2 k π + π 2 } = { 1 } \{x_{n_{k^{(2)}}}\}=\{\sin 2k\pi+\frac{\pi}{2}\}=\{1\} {xnk(2)}={sin2+2π}={1}
所以 lim ⁡ k → ∞ x n k ( 2 ) = 1 \lim\limits_{k\to\infty}x_{n_{k^{(2)}}}=1 klimxnk(2)=1
这两个子列的极限不一致,则原数列 { sin ⁡ n π 4 } \{\sin\frac{n\pi}{4}\} {sin4}不收敛。


【推论】若 { x n } \{x_{n}\} {xn}存在两个子列收敛于不同极限,则 { x n } \{x_{n}\} {xn}发散。

2.4.6 Bolzanp-Weierstrass(波尔查诺-魏尔斯特拉斯)定理

【定理2.4.5】有界数列必有收敛的子列。
【证】设 { x n } \{x_{n}\} {xn}有界,设 a 1 ≤ x n ≤ b 1 a_{1}\le x_{n}\le b_{1} a1xnb1 ∀ n , a n ∈ [ a 1 , b 1 ] \forall n,a_{n}\in[a_{1},b_{1}] n,an[a1,b1],将 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1]平分成两个闭区间 [ a 1 , a 1 + b 1 2 ] , [ a 1 + b 1 2 , b 1 ] [a_{1},\frac{a_{1}+b_{1}}{2}],[\frac{a_{1}+b_{1}}{2},b_{1}] [a1,2a1+b1],[2a1+b1,b1],(这两个区间其中可能一个或两个包含 { x n } \{x_{n}\} {xn}的无穷可列项,如果这两个区间都不包含该数列的无穷可列项,那它就不是数列,变成有限个元素了),其中必有一个区间包含 { x n } \{x_{n}\} {xn}的无穷多项,取它为 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2],将 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2]平分成两个闭区间 [ a 2 , a 2 + b 2 2 ] , [ a 2 + b 2 2 , b 2 ] [a_{2},\frac{a_{2}+b_{2}}{2}],[\frac{a_{2}+b_{2}}{2},b_{2}] [a2,2a2+b2],[2a2+b2,b2],其中必有一个区间包含 { x n } \{x_{n}\} {xn}的无穷多项,取它为 [ a 3 , b 3 ] [a_{3},b_{3}] [a3,b3],一直做下去,得到一个闭区间套 { [ a n , b n ] } \{[a_{n},b_{n}]\} {[an,bn]},其中该闭区间套中的每个闭区间 [ a n , b n ] [a_{n},b_{n}] [an,bn]都有无穷多项 x n x_{n} xn,由闭区间套定理, ∃ \exists 唯一的 ∀ n , ξ ∈ [ a n , b n ] , lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = ξ \forall n,\xi\in[a_{n},b_{n}],\lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n}=\xi n,ξ[an,bn],nliman=nlimbn=ξ
现证 { x n } \{x_{n}\} {xn}有子列以 ξ \xi ξ为极限,
[ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1]中取 x n 1 x_{n_{1}} xn1
[ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2]中取 x n 2 ( n 2 > n 1 ) x_{n_{2}}(n_{2}>n_{1}) xn2(n2>n1),
[ a 3 , b 3 ] [a_{3},b_{3}] [a3,b3]中取 x n 3 ( n 3 > n 2 ) x_{n_{3}}(n_{3}>n_{2}) xn3(n3>n2),
一直做下去
[ a k , b k ] [a_{k},b_{k}] [ak,bk]中取 x n k ( n k > n k − 1 ) x_{n_{k}}(n_{k}>n_{k-1}) xnk(nk>nk1)
得到 { x n } \{x_{n}\} {xn}的子列 { x n k } \{x_{n_{k}}\} {xnk}
a k ≤ x n k ≤ b k a_{k}\le x_{n_{k}}\le b_{k} akxnkbk x n k x_{n_{k}} xnk是在 [ a k , b k ] [a_{k},b_{k}] [ak,bk]中取得的)
k → ∞ k\to\infty k,由于 lim ⁡ k → ∞ a k = ξ , lim ⁡ k → ∞ b k = ξ \lim\limits_{k\to\infty}a_{k}=\xi,\lim\limits_{k\to\infty}b_{k}=\xi klimak=ξ,klimbk=ξ
由数列极限的夹逼性定理可知
lim ⁡ k → ∞ x n k = ξ \lim\limits_{k\to\infty}x_{n_{k}}=\xi klimxnk=ξ
证毕


【定理2.4.6】若 { x n } \{x_{n}\} {xn}是无界数列,则存在子列 { x n k } \{x_{n_{k}}\} {xnk}是无穷大量(无界可能无上界或无下界或上下界都没有)
【注1】无界可能无上界或无下界或上下界都没有,如果一个数列无上界,那它一定能找到一个子列是正无穷大量,如果一个数列无下界,那它一定能找到一个子列是负无穷大量。
【注2】无界数列不一定是无穷大量,比如 2 , 3 , 2 , 4 , 2 , 5 , 2 , 6 , . . . 2,3,2,4,2,5,2,6,... 2,3,2,4,2,5,2,6,...,奇数项是一个常数,偶数项是无界的,它不一定是无穷大量,奇数项始终是2不符合是无穷大的条件。
【证】由于 { x n } \{x_{n}\} {xn}是无界数列,则 ∀ M > 0 , { x n } \forall M>0,\{x_{n}\} M>0,{xn}必有无穷多项满足 ∣ x n ∣ > M |x_{n}|>M xn>M(有界定义的相反命题,如果只有有限项 ∣ x n ∣ > M |x_{n}|>M xn>M,那这个数列就有界了)
M 1 = 1 M_{1}=1 M1=1,存在 x n 1 x_{n_{1}} xn1,使得 ∣ x n 1 ∣ > 1 |x_{n_{1}}|>1 xn1>1
M 2 = 2 M_{2}=2 M2=2,存在 x n 2 x_{n_{2}} xn2,使得 ∣ x n 2 ∣ > 2 , ( x n 2 > x n 1 ) |x_{n_{2}}|>2,(x_{n_{2}}>x_{n_{1}}) xn2>2,(xn2>xn1)
M 3 = 3 M_{3}=3 M3=3,存在 x n 3 x_{n_{3}} xn3,使得 ∣ x n 3 ∣ > 3 , ( x n 3 > x n 2 ) |x_{n_{3}}|>3,(x_{n_{3}}>x_{n_{2}}) xn3>3,(xn3>xn2)
一直做下去
M k = k M_{k}=k Mk=k,存在 x n k x_{n_{k}} xnk,使得 ∣ x n k ∣ > k , ( x n k > x n k − 1 ) |x_{n_{k}}|>k,(x_{n_{k}}>x_{n_{k-1}}) xnk>k,(xnk>xnk1)

找到了 { x n k } \{x_{n_{k}}\} {xnk} ∣ x n k ∣ > k |x_{n_{k}}|>k xnk>k
{ x n k } \{x_{n_{k}}\} {xnk}是无穷大量

  • 15
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔理沙偷走了BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值