【错误处理】error C2065: “SurfFeatureDetector”: 未声明的标识符;error C2065: “FlannBasedMatcher”: 未声明的标识符

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_30214939/article/details/67638385

VS2013+opencv2.4.9环境下

1.error:

错误	20	error C2065: “FlannBasedMatcher”: 未声明的标识符	
错误	62	error C2065: “RANSAC”: 未声明的标识符	
错误	1	error C2065: “SurfFeatureDetector”: 未声明的标识符	

2.solution:

  • SurfFeatureDetector(或者SiftFeatureDetector)包含在opencv2/nonfree/features2d.hpp【注】并在“项目属性->链接器->输入->附加依赖项”中加入库文件:opencv_nonfree249d.lib

#include<opencv2/nonfree/features2d.hpp> 

  • 特征点匹配中如果使用到BruteForceMatcher则应该include头文件:opencv2/legacy/legacy.hpp【注】并在“项目属性->链接器->输入->附加依赖项”中加入库文件:opencv_legacy249d.lib

#include<opencv2/legacy/legacy.hpp> 

  • 特征点匹配中如果用到FlannBasedMatcher则应该include头文件:opencv2/features2d/features2d.hpp【注】并在“项目属性->链接器->输入->附加依赖项”中加入库文件:opencv_features2d240d.lib

#include<opencv2/features2d/features2d.hpp> 

3.code:

#include <iostream>
#include<highgui.h>
#include<opencv2/nonfree/features2d.hpp> 
#include<opencv2/legacy/legacy.hpp> 
#include<opencv2/features2d/features2d.hpp> 
using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
	argv[1] = "picture/1.jpg";		// 去校正
	argv[2] = "picture/2.jpg";				// 被校正

	Mat img_object = imread(argv[1], IMREAD_GRAYSCALE);
	Mat img_scene = imread(argv[2], IMREAD_GRAYSCALE);
	if (!img_object.data || !img_scene.data)
	{
		std::cout << " --(!) Error reading images " << std::endl; return -1;
	}

	//-- Step 1: Detect the keypoints using SURF Detector  
	int minHessian = 400;
	SurfFeatureDetector detector(minHessian);
	std::vector<KeyPoint> keypoints_object, keypoints_scene;
	detector.detect(img_object, keypoints_object);
	detector.detect(img_scene, keypoints_scene);

	//-- Step 2: Calculate descriptors (feature vectors)  
	SurfDescriptorExtractor extractor;
	Mat descriptors_object, descriptors_scene;
	extractor.compute(img_object, keypoints_object, descriptors_object);
	extractor.compute(img_scene, keypoints_scene, descriptors_scene);

	//-- Step 3: Matching descriptor vectors using FLANN matcher  
	FlannBasedMatcher matcher;
	std::vector< DMatch > matches;
	matcher.match(descriptors_object, descriptors_scene, matches);
	double max_dist = 0; double min_dist = 100;

	//-- Quick calculation of max and min distances between keypoints  
	for (int i = 0; i < descriptors_object.rows; i++)
	{
		double dist = matches[i].distance;
		if (dist < min_dist) min_dist = dist;
		if (dist > max_dist) max_dist = dist;
	}

	printf("-- Max dist : %f \n", max_dist);
	printf("-- Min dist : %f \n", min_dist);

	//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )  
	std::vector< DMatch > good_matches;

	for (int i = 0; i < descriptors_object.rows; i++)
	{
		if (matches[i].distance < 3 * min_dist)
		{
			good_matches.push_back(matches[i]);
		}
	}

	Mat img_matches;
	drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
		good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
		vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

	//-- Localize the object from img_1 in img_2  
	std::vector<Point2f> obj;
	std::vector<Point2f> scene;

	for (size_t i = 0; i < good_matches.size(); i++)
	{
		//-- Get the keypoints from the good matches  
		obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
		scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
	}

	Mat H = findHomography(obj, scene, RANSAC);

	//-- Get the corners from the image_1 ( the object to be "detected" )  
	std::vector<Point2f> obj_corners(4);
	obj_corners[0] = Point(0, 0); obj_corners[1] = Point(img_object.cols, 0);
	obj_corners[2] = Point(img_object.cols, img_object.rows); obj_corners[3] = Point(0, img_object.rows);
	std::vector<Point2f> scene_corners(4);
	perspectiveTransform(obj_corners, scene_corners, H);
	//-- Draw lines between the corners (the mapped object in the scene - image_2 )  
	Point2f offset((float)img_object.cols, 0);
	line(img_matches, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4);
	line(img_matches, scene_corners[1] + offset, scene_corners[2] + offset, Scalar(0, 255, 0), 4);
	line(img_matches, scene_corners[2] + offset, scene_corners[3] + offset, Scalar(0, 255, 0), 4);
	line(img_matches, scene_corners[3] + offset, scene_corners[0] + offset, Scalar(0, 255, 0), 4);

	//-- Show detected matches  
	imshow("Good Matches & Object detection", img_matches);
	waitKey(0);
	return 0;
}


展开阅读全文

没有更多推荐了,返回首页