今年校招对于像我这种双非来说属实不友好,前前后后投了将近50个职位,几乎全军覆没,估计很多同学也经历了备战秋招的艰难(不包括985、211的同志),在这把我秋招的经验分享出来,希望给还在找工作的或者将要找工作的同学提供一些小小的启示。
应聘成功的重要条件
对普通院校的志愿机器学习相关职位的硕士来说只有一个字-难!原因很简单就是人太多,职位要求相对来说较高。原本想钻入征战机器学习职位的大军中,中途转了开发的人笔笔皆是,对于这种情况,希望大家根据自身情况选择职位,不要盲目跟风,机器学习工资与其他职位的工资差距没有你想象中的那么大!如果你非常希望以后能在机器学习的大坑里搅和搅和,那么我总结了成功入职的四个重要条件可供参考。
- 985、211名校的硕士、博士。
- 有机器学习相关的顶级会议或者期刊论文。
- 有领域内所承认的相关比赛经验。
- 所研究内容要相关,最好有相关的项目经历。
如何备战秋招
备战秋招,越早越好,我是七月份着手准备的校招,首先参加了一些提前批招聘,这个时候很多企业是不需要笔试的,因此一份优秀的个人简历就是你成功的敲门砖,然后积极准备面试,这个时间点准备面试并不晚,常问的机器学习问题准备起来并不难。但是笔试需要的是长期的编程积累,如果现在开始准备就有些累了,因为编程基础算法太多,一天看不了几个题,对于基础不扎实的人,例如我来说,简直太难了。还是奉劝各位没事的时候多刷刷编程的笔试题。下面这张图是我准备秋招的文件夹,我按照不同公司建立不同的子文件夹,里面存放相应的简历和资料,因为简历是不断更新的而且要根据不同职位有所调整,因此分文件夹存放不同岗位的文件是有必要的。然后再准备一个进程管理表格,里面存放每个职位投递的时间,进展,职位以及职位要求。我认为这些是很有必要的,可以提高你在投递职位时的效率。
何时准备秋招?
国内的大企业会在早些时候进行提前批招聘,这个时间大约在7~9月份左右,这个阶段被称为神仙打架,因为这时是各大企业提前招揽人才的时候,因此这个阶段工资相对较高,有一些的SP和SSP职位,各路大神蠢蠢欲动,都想拿到一些较高的薪资待遇,或者着手养一些“备胎”。
九月份到十一月份左右,是秋招的黄金时期,在这个阶段,各个公司会到高校进行校园宣讲,这个阶段投职的成功率最高。
经过黄金高峰期之后,学校的大部分同学都找到合适的工作或者保底的工作,这个时候还有一部分同学还没找到工作,这个时候呢,没找到工作到的同学也别慌,尽管职位没有前面的多,但是还是会有的,有些大公司也会在网上发布一些补招,这个时候就要多留意下网上信息。
如何查找招聘信息
牛客网汇集了许多编程相关的职位信息,优先推荐。而且在七八月份牛客网会有个SP招聘专场,可以关注。
专业的招聘网站,例如智联招聘、拉勾网、BOSS直聘等等都可以注册账号,只不过填写简历比较麻烦。
各个公司的微信招聘公众号或招聘网站以及个人公众号
如何准备笔试面试
拿我来说笔试面试经验主要靠牛客网,因为牛客网会有许多人写一些笔试和面试的经验,这些经验具有很高的参考价值,可以按照别人总结的问题来准备笔试面试。
面试经验分享
面试流程一般比较稳定,先自我介绍,然后面试官后根据简历或者自我介绍或者准备的专业问题来提问。我把在面试中总结的经验分享在下面。
一面(技术面):
- 技术面,准备一个自我介绍,2-3分钟即可,自己把握,尽量突出自己做的研究工作。一般面试官都会围绕简历上或者你的自我介绍的内容进行询问。
- 有些面试官会着重问项目经历,例如科大讯飞,让你把用的技术详细介绍一下,在项目方面就要多做些准备,例如项目的背景,做项目用了什么技术,在做项目的过程中遇到什么问题,怎么解决的。
- 专业领域的基础算法肯定会问的,不同公司侧重点不同,像顺丰主要提问机器学习相关的基础知识,问的比较多,比较基础,京东不仅问机器学习算法还问编程的基础算法例如排序什么的,科大讯飞问的比较简单比较少。
- 在回答的时候适当的拓展是加分项,例如提到支持向量机,你可以回答,你用过,然后讲述怎么用的,相比其他算法有什么优缺点。
- 如果有个问题回答不上来,可以转移到一个你比较熟悉的知识区域,例如问你GBDT是什么原理,你可以说这个用的比较少,主要用到神经网络。一般面试官不会继续追问他会顺着你的引导来问,适当的引导,如果吹大了,把自己引导到一个不太熟悉的区域就GG了。连续两个问题回答不上来,一定不要慌,因为一慌底气就没了,后面的就更答不好了。面试的时候问题答不上来是正常现象,实在不会的问题简单解释一下即可,切勿强行Carry。
- 一般面试快结束的时候,面试官会问你,你有什么要问的么?这个问题就要提前想想了,第一次面试的时候我没想过这个问题,被蒙了,提问的很白痴。这种问题问的好能拉近和面试官的距离,得到一些有用信息。
- 专业知识一定要准备好,这个是所有的面试成功的基础,如果专业领域内的基础知识都答不好,啥都白费。建议是多看看牛客网、知乎和百度的面经,整理常问的知识点,好好准备。
- 面试过程中适当的拓展,拉时长好像也对面试有好处。往往面试时间越长,说明面试官对你兴趣较大。
科大讯飞-智能语音核心技术研究员
一面:
主要问项目(项目中提到的都提问了),项目中提到的特征提取方法。
推支持向量机
意向工作地点
二面:
问项目中做的什么,主要贡献,
了解图像处理中的网络么?
对于多GPU处理有了解么?
对于支持向量机和神经网络有什么区别?
为什么参加这些比赛?比赛如何分工
认为自己的优点和缺点
为什么想来科大讯飞?
如果有多个offer会怎么选?
对薪资有什么要求?给个大体范围
意向工作地点在哪?如果去合肥有意见么?
为什么想去上海。
顺丰-机器学习算法工程师
一面:
常见的一些分布
支持向量机的目标函数
如何解凸优化问题
项目中的事
神经网络几层
如何用数学解释梯度爆炸和梯度消失,如果解决过拟合问题
决策树如何剪枝
相似度度量有哪几种
线程和进程
机器学习和深度学习的区别
几种常用的评估方法
HR面:
自我介绍
讲一讲所做的项目中最有成就感的一个
为什么想来顺丰
现在面试的职位在深圳,可以么
认为自己的缺点
目标薪资
技术二面:
简单做个自我介绍
撕个代码
这个代码的时间复杂度是多少
讲一下项目
京东-机器学习算法工程师(商品推荐相关)
一面:
推一下svm
朴素贝叶斯
auc公式
100000个数排序
排序算法及时间复杂度
偏差和方差
二面:
你投京东的其他部门了么?
有100个语句通过两种算法进行排序得到两种排序结果,然后有一个正确的排序结果,如何评估这两个排序方法,给出公式
计算用户热度,假如有三个参数 一个月内的总浏览量,每天对商品的点击率,以及时间戳,给出一个用户热度计算公式,提示,距离目标时间越近,可信度越高。
职业规划
大华-音频算法工程师
一面:
项目,怎么做的,遇到的什么问题怎么解决的,参加的这些比赛用的什么工具。
HR面:
自我介绍
本科期间学习的一些课程,做了哪些跟专业相关的项目和比赛
对比本科学习和研究生学习,有哪些成长
研究生做的这些东西哪些与应聘的职位相关
研会副主席主要干些什么,你认为在这个岗位上最能体现你价值的事情
职业规划
家是山东的,想在哪里工作?
期望的薪资,为什么?
对大华有什么了解?
欢聚时代-深度学习语音识别算法工程师
技术一面:
自我介绍
项目相关问题
支持向量机推导
常用的深度学习算法
CNN相关问题
用什么工具构架神经网络
技术二面:
常用的声学特征
MFCC推导
如何改进MFCC降低运算量
CNN相关问题。