Environmental sound sources classification using neural networks

摘要

噪音污染是世界上许多城市中心面临的最大的单一环境问题。目前用于监测声音的技术既不能为设计者和规划者提供足够的信息,也不能确定影响感知的许多声音参数。

本研究的总体目标是为复杂城市环境的声学监测提供新的策略。本研究的具体目标是确定现有源的声音特征,以实现自动地声音源识别。本文报告了使用快速傅立叶变换来产生来自不同来源的声音的频谱数据,以使用神经网络进行分类。

介绍

城市环境中的噪声对居民的活动造成的干扰是一个难以解决的问题。这些可能会干扰睡眠,教育,家庭和公共环境和电信的语音清晰度,或者音乐会、电影和户外活动等其他娱乐活动。城市环境中令人不安的声音(或噪音)的主要来源是交通工具,工厂和设备,音乐娱乐以及其他人和动物的附带活动和发声。

目前监测环境噪声的做法涉及对声压级进行时间平均,滤波后进行测量以符合人体听力敏感度或其他标准。平均时间可能长达24小时。这些时间平均的测量方法告诉城市设计师和管理人员很少有关噪声的来源和类型,并且可能不会合适的解释会引起干扰的声学特征[1,2,3,4,5,6]。这些技术并没有为设计人员提供他们需要的信息来使用新的计算机建模技术[7,8],也没有提供其他噪声消减方法所必需的信息,如改变特定噪声事件发生的频率。

这项研究旨在确定声音来源,以便在复杂的环境中构建所有来源的模型。这项研究将有助于模拟不同声源与人类主体感知的相互作用,并使城市管理者能够将环境变化应用于特定类型的声源。

对声音的设计和管理的敏感度早已过时。墨尔本市报道的主要环境问题是噪音干扰[9]35%的健康投诉与噪声干扰有关。噪声投诉远多于其他环境问题,如垃圾处理投诉,异味投诉,垃圾压缩,虫害控制和非法排放。“[9]。噪声管理被确定为墨尔本市的服务缺口,需要更多的研究,调研和行动[10]

仅在新南威尔士州,1995/96年度噪音诱发听力损失的工伤支出就超过1亿美元。显而易见,工业噪声和个人音响导致澳大利亚年轻的听觉健康的降低(指标暴露20-29岁。比未曝露的50-59岁的老人更差)[11],而且夜总会的娱乐噪音的影响尚未测量。尽管许多研究表明,长期暴露于嘈杂且不可控的噪声下的人的认知和行动会受损[12],但由于这些因素造成的生产力损失(并且由于实际听力损失而进一步恶化)尚未被澳大利亚经济计算。

运输噪音对房地产价值的影响已被确定为噪声暴露[13]dBA)约1%的房产价值折损指数。在开发过程中对噪音缺乏关注导致房地产突然贬值[14]。墨尔本中央商务区的住宅开发导致了对议会卫生官员的大量噪音投诉[9]

讨论

据观察,在用FFT进行预处理时,相对不变的噪声信号可以通过ANN更好地分类。因此,像空调嗡嗡声,机器声音和水流这样的相对平稳的信号可以通过ANN实现高精度分类。另一方面,非平稳信号如来自移动摩托车的声音和声音不能被准确分类。

使用FFT来表示信号可能是这种技术的缺点。这是由于FFT不适用于非平稳信号。虽然空调,机器和水声音具有相对恒定的频率内容和包络,但声音的特征主要是随着时间的变化而变化。FFT去除信号中的所有的时间信息,因此它消除了信号中最明显的特征。

结论

不同的实验表明,如果信号的频谱内容不随时间改变,那么用FFT(为了创建神经网络的输入)对信号进行预处理适合于这些声源分类的目的。但是因为环境中的大量信号具有时变性质,所以重要的是应该用包含时间信息的技术来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值