win10系统下GTX1080TI显卡配置tensorflow运行环境(都是泪系列)

win10系统下GTX1080TI显卡配置tensorflow-gpu运行环境(都是泪系列)

原来在Ubuntu16.04系统下装过一次运行环境,现在因为项目需求在win10下重装还是经过了一番波折,在这记录下正确的安装方式,分享出来!!

安装准备

首先你得知道安装tensorflow-gpu需要安装哪些环境或者工具,给出一张版本适配图有助于理解。
图链接tensorflow-gpu运行环境配置图从图上可以看出,我们需要安装做4项工作即安装Python、安装c编译器及其环境、安装cudnn和cuda。下图是我安装的工具版本。我已经上传到百度云,有需要可以直接下载链接:https://pan.baidu.com/s/1u9DMthqBRIMMhFgdWru1xA 提取码:gsz6 复制这段内容后打开百度网盘手机App,操作更方便哦
采用的工具版本

安装步骤详解

安装MSVC 2015update 3和编译工具

这个步骤只需要安装好vc2015即可,安装目录没有要求。百度云链接中的VC2015软件需要在线下载安装,过程比较慢只需要等就好了。

安装cuda 9.0

这个cuda软件一共有5个可执行文件,先安装cuda_9.0.176_win10.exe主程序,后面四个都是补丁,按照顺序一个一个安装即可。默认安装目录,其他的没尝试过。cuda包
安装后还有一个问题就是配置环境变量,即将cuda9.0的安装目录配置到系统环境变量中,使得其他应用软件可以直接查询到该目录。具体做法是首先找到安装目录,如果是默认目录则应该是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 ,将该目录复制,然后右击此计算机打开属性后出现此窗口。高级系统设置然后打开高级系统设置找到环境变量按钮,如下图
环境变量点击环境变量按钮,后找到Path变量,然后双击
path然后点新建将刚才的目录复制上去。
测试下cuda是否安装成功,打开CMD,输入nvcc -V,如果有反馈则说明安装成功。
cuda测试
然后就是安装cudnn 我下载的cudnn v7.1,该过程只需要将cudnn文件按照存放的目录复制到指定的cuda目录中。

Anaconda安装过程

首先我安装的Anaconda3-4.2.0(python3.5),安装过程没什么好说的一路点下一步,其中有个窗口让配置到系统变量,打钩即可。

tensorflow安装过程

打开Anconda prompt,系统的原因最好以管理员身份运行。最近国内源许多都失效了,但还是有能用的。pip install 包名-i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
我安装到是tensorflow-gpu 1.9.0,因此直接输入pip install tensorflow-gpu==1.9.0 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com等待安装即可。
安装好之后可以简单测试下是否安装成功。

### 安装环境配置 为了在 Windows 11 系统上成功使用 NVIDIA GeForce GTX 1080 Ti 显卡安装 TensorFlow 深度学习框架,需确保系统满足特定条件并遵循一系列步骤来完成必要的软件和库的安装。 #### 配置需求概述 - **操作系统**: Windows 11 - **显卡**: NVIDIA GeForce GTX 1080 Ti 支持 CUDA 计算能力[^1] - **Python 版本**: 推荐 Python 3.7 或更高版本以获得更好的兼容性和功能支持[^2] #### 软件依赖项 ##### 1. Anaconda 发行版 建议采用 Anaconda 来管理虚拟环境以及简化包管理和部署流程。Anaconda 提供了一个易于使用的界面用于创建、保存、加载和切换不同项目所需的独立运行时环境[^3]。 ##### 2. NVIDIA GPU 驱动程序 确保已安装最新的 NVIDIA GPU 驱动程序,这一步骤对于启用硬件加速至关重要。可以通过访问[NVIDIA官方网站](https://www.nvidia.com/Download/index.aspx)获取适用于当前系统的驱动更新文件,并依照提示完成安装过程。 ##### 3. CUDA Toolkit 及 cuDNN 库 针对 GTX 1080 Ti 的最佳实践表明应选择与之相匹配的 CUDA 工具链版本。考虑到 TensorFlow 对 CUDA 和 cuDNN 的具体要求,推荐如下组合: - **CUDA Version:** 使用稳定且被广泛测试过的 CUDA 10.x 版本(例如 CUDA 10.1) - **cuDNN Library:** 下载对应于所选 CUDA 版本的 cuDNN SDK (如 cuDNN v7.6),注意两者之间存在严格的版本关联性 > 注意:请务必确认下载链接指向官方渠道提供的二进制分发包,避免潜在的安全风险或不兼容问题。 #### 创建 Conda 环境并安装 TensorFlow-GPU 通过以下命令序列可以在新建立的 conda 环境内快速设置好 TensorFlow 开发所需的一切组件: ```bash # 更新 conda 到最新版本 conda update -n base conda # 新建名为 tf_gpu_env 的 python 3.7 环境 conda create --name tf_gpu_env python=3.7 # 激活新建环境 conda activate tf_gpu_env # 添加 channels 并安装 tensorflow-gpu conda config --add channels conda-forge conda install tensorflow-gpu cudatoolkit=10.1 cudnn=7.6 ``` 上述指令不仅设置了合适的 Python 解释器及其标准库集合,还引入了来自 `conda-forge` 渠道经过预编译优化后的 TensorFlow 构建产物连同其依赖关系图中的其他要素一起打包进来。 #### 测试安装成果 最后验证整个栈能否正常工作非常重要。打开一个新的终端窗口执行下面这段简单的 Python 脚本来检查是否能够识别到可用的 GPU 设备: ```python import tensorflow as tf print("Num GPUs Available:", len(tf.config.experimental.list_physical_devices('GPU'))) ``` 如果一切顺利的话,则应该看到输出显示至少有一个 GPU 正常连接在线;反之则可能意味着某些环节出现了偏差需要回溯排查原因所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值